| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fileln0 | Structured version Visualization version GIF version | ||
| Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fileln0 | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ 𝐹) | |
| 2 | 0nelfil 23752 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹) | |
| 3 | nelne2 3023 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐹) → 𝐴 ≠ ∅) | |
| 4 | 1, 2, 3 | syl2anr 597 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 ‘cfv 6486 Filcfil 23748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-fbas 21276 df-fil 23749 |
| This theorem is referenced by: filinn0 23763 filintn0 23764 alexsublem 23947 cfil3i 25185 iscmet3 25209 filnetlem4 36354 |
| Copyright terms: Public domain | W3C validator |