MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fileln0 Structured version   Visualization version   GIF version

Theorem fileln0 22999
Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
fileln0 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)

Proof of Theorem fileln0
StepHypRef Expression
1 id 22 . 2 (𝐴𝐹𝐴𝐹)
2 0nelfil 22998 . 2 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 nelne2 3044 . 2 ((𝐴𝐹 ∧ ¬ ∅ ∈ 𝐹) → 𝐴 ≠ ∅)
41, 2, 3syl2anr 597 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2110  wne 2945  c0 4262  cfv 6432  Filcfil 22994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fv 6440  df-fbas 20592  df-fil 22995
This theorem is referenced by:  filinn0  23009  filintn0  23010  alexsublem  23193  cfil3i  24431  iscmet3  24455  filnetlem4  34566
  Copyright terms: Public domain W3C validator