MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fileln0 Structured version   Visualization version   GIF version

Theorem fileln0 22458
Description: An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
fileln0 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)

Proof of Theorem fileln0
StepHypRef Expression
1 id 22 . 2 (𝐴𝐹𝐴𝐹)
2 0nelfil 22457 . 2 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
3 nelne2 3111 . 2 ((𝐴𝐹 ∧ ¬ ∅ ∈ 𝐹) → 𝐴 ≠ ∅)
41, 2, 3syl2anr 599 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2115  wne 3014  c0 4276  cfv 6343  Filcfil 22453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fv 6351  df-fbas 20542  df-fil 22454
This theorem is referenced by:  filinn0  22468  filintn0  22469  alexsublem  22652  cfil3i  23876  iscmet3  23900  filnetlem4  33786
  Copyright terms: Public domain W3C validator