| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfi | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfi | ⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filin 23797 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) | |
| 2 | 1 | 3expib 1122 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹)) |
| 3 | 2 | ralrimivv 3186 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ 𝐹) |
| 4 | inficl 9442 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ 𝐹 ↔ (fi‘𝐹) = 𝐹)) | |
| 5 | 3, 4 | mpbid 232 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ‘cfv 6536 ficfi 9427 Filcfil 23788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 df-en 8965 df-fin 8968 df-fi 9428 df-fbas 21317 df-fil 23789 |
| This theorem is referenced by: filintn0 23804 fclscmpi 23972 alexsublem 23987 iscmet3 25250 |
| Copyright terms: Public domain | W3C validator |