MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filfi Structured version   Visualization version   GIF version

Theorem filfi 23774
Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filfi (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)

Proof of Theorem filfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filin 23769 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
213expib 1122 . . 3 (𝐹 ∈ (Fil‘𝑋) → ((𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹))
32ralrimivv 3173 . 2 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
4 inficl 9309 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 ↔ (fi‘𝐹) = 𝐹))
53, 4mpbid 232 1 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  cin 3896  cfv 6481  ficfi 9294  Filcfil 23760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295  df-fbas 21288  df-fil 23761
This theorem is referenced by:  filintn0  23776  fclscmpi  23944  alexsublem  23959  iscmet3  25220
  Copyright terms: Public domain W3C validator