MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filfi Structured version   Visualization version   GIF version

Theorem filfi 23888
Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filfi (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)

Proof of Theorem filfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filin 23883 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
213expib 1122 . . 3 (𝐹 ∈ (Fil‘𝑋) → ((𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹))
32ralrimivv 3206 . 2 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹)
4 inficl 9494 . 2 (𝐹 ∈ (Fil‘𝑋) → (∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹 ↔ (fi‘𝐹) = 𝐹))
53, 4mpbid 232 1 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  cin 3975  cfv 6573  ficfi 9479  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384  df-fil 23875
This theorem is referenced by:  filintn0  23890  fclscmpi  24058  alexsublem  24073  iscmet3  25346
  Copyright terms: Public domain W3C validator