| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filfi | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filfi | ⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filin 23739 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹) | |
| 2 | 1 | 3expib 1122 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 ∩ 𝑦) ∈ 𝐹)) |
| 3 | 2 | ralrimivv 3170 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ 𝐹) |
| 4 | inficl 9315 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝑥 ∩ 𝑦) ∈ 𝐹 ↔ (fi‘𝐹) = 𝐹)) | |
| 5 | 3, 4 | mpbid 232 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3902 ‘cfv 6482 ficfi 9300 Filcfil 23730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-2o 8389 df-en 8873 df-fin 8876 df-fi 9301 df-fbas 21258 df-fil 23731 |
| This theorem is referenced by: filintn0 23746 fclscmpi 23914 alexsublem 23929 iscmet3 25191 |
| Copyright terms: Public domain | W3C validator |