| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filin | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filin | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23763 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbasssin 23751 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 4 | inss1 4184 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 5 | filelss 23767 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 6 | 4, 5 | sstrid 3941 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
| 7 | filss 23768 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋 ∧ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
| 8 | 7 | 3exp2 1355 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 9 | 8 | com23 86 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹))) |
| 11 | 10 | rexlimdv 3131 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 12 | 6, 11 | syldan 591 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6481 fBascfbas 21279 Filcfil 23760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-fbas 21288 df-fil 23761 |
| This theorem is referenced by: isfil2 23771 filfi 23774 filinn0 23775 infil 23778 filconn 23798 filuni 23800 trfil2 23802 trfilss 23804 ufprim 23824 filufint 23835 rnelfmlem 23867 rnelfm 23868 fmfnfmlem2 23870 fmfnfmlem3 23871 fmfnfmlem4 23872 fmfnfm 23873 txflf 23921 fclsrest 23939 metust 24473 filnetlem3 36424 |
| Copyright terms: Public domain | W3C validator |