![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filin | Structured version Visualization version GIF version |
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filin | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22071 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | fbasssin 22059 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
4 | inss1 4053 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
5 | filelss 22075 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
6 | 4, 5 | syl5ss 3832 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
7 | filss 22076 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋 ∧ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
8 | 7 | 3exp2 1416 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
9 | 8 | com23 86 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
10 | 9 | imp 397 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹))) |
11 | 10 | rexlimdv 3212 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
12 | 6, 11 | syldan 585 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
13 | 12 | 3adant3 1123 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
14 | 3, 13 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 ∃wrex 3091 ∩ cin 3791 ⊆ wss 3792 ‘cfv 6137 fBascfbas 20141 Filcfil 22068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fv 6145 df-fbas 20150 df-fil 22069 |
This theorem is referenced by: isfil2 22079 filfi 22082 filinn0 22083 infil 22086 filconn 22106 filuni 22108 trfil2 22110 trfilss 22112 ufprim 22132 filufint 22143 rnelfmlem 22175 rnelfm 22176 fmfnfmlem2 22178 fmfnfmlem3 22179 fmfnfmlem4 22180 fmfnfm 22181 txflf 22229 fclsrest 22247 metust 22782 filnetlem3 32971 |
Copyright terms: Public domain | W3C validator |