|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > filin | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| filin | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | filfbas 23857 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbasssin 23845 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | 
| 4 | inss1 4236 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 5 | filelss 23861 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 6 | 4, 5 | sstrid 3994 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∩ 𝐵) ⊆ 𝑋) | 
| 7 | filss 23862 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋 ∧ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
| 8 | 7 | 3exp2 1354 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) | 
| 9 | 8 | com23 86 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) | 
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹))) | 
| 11 | 10 | rexlimdv 3152 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) | 
| 12 | 6, 11 | syldan 591 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) | 
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) | 
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∃wrex 3069 ∩ cin 3949 ⊆ wss 3950 ‘cfv 6560 fBascfbas 21353 Filcfil 23854 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-fbas 21362 df-fil 23855 | 
| This theorem is referenced by: isfil2 23865 filfi 23868 filinn0 23869 infil 23872 filconn 23892 filuni 23894 trfil2 23896 trfilss 23898 ufprim 23918 filufint 23929 rnelfmlem 23961 rnelfm 23962 fmfnfmlem2 23964 fmfnfmlem3 23965 fmfnfmlem4 23966 fmfnfm 23967 txflf 24015 fclsrest 24033 metust 24572 filnetlem3 36382 | 
| Copyright terms: Public domain | W3C validator |