| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filin | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filin | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23742 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbasssin 23730 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 4 | inss1 4203 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 5 | filelss 23746 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 6 | 4, 5 | sstrid 3961 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
| 7 | filss 23747 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋 ∧ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
| 8 | 7 | 3exp2 1355 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 9 | 8 | com23 86 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹))) |
| 11 | 10 | rexlimdv 3133 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 12 | 6, 11 | syldan 591 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 ⊆ wss 3917 ‘cfv 6514 fBascfbas 21259 Filcfil 23739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-fbas 21268 df-fil 23740 |
| This theorem is referenced by: isfil2 23750 filfi 23753 filinn0 23754 infil 23757 filconn 23777 filuni 23779 trfil2 23781 trfilss 23783 ufprim 23803 filufint 23814 rnelfmlem 23846 rnelfm 23847 fmfnfmlem2 23849 fmfnfmlem3 23850 fmfnfmlem4 23851 fmfnfm 23852 txflf 23900 fclsrest 23918 metust 24453 filnetlem3 36375 |
| Copyright terms: Public domain | W3C validator |