| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filin | Structured version Visualization version GIF version | ||
| Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filin | ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23791 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbasssin 23779 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 4 | inss1 4217 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 5 | filelss 23795 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ 𝑋) | |
| 6 | 4, 5 | sstrid 3975 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∩ 𝐵) ⊆ 𝑋) |
| 7 | filss 23796 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋 ∧ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → (𝐴 ∩ 𝐵) ∈ 𝐹) | |
| 8 | 7 | 3exp2 1355 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 9 | 8 | com23 86 | . . . . . 6 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝐴 ∩ 𝐵) ⊆ 𝑋 → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)))) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹))) |
| 11 | 10 | rexlimdv 3140 | . . . 4 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∩ 𝐵) ⊆ 𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 12 | 6, 11 | syldan 591 | . . 3 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ 𝐹)) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ∩ 𝐵) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3061 ∩ cin 3930 ⊆ wss 3931 ‘cfv 6536 fBascfbas 21308 Filcfil 23788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-fbas 21317 df-fil 23789 |
| This theorem is referenced by: isfil2 23799 filfi 23802 filinn0 23803 infil 23806 filconn 23826 filuni 23828 trfil2 23830 trfilss 23832 ufprim 23852 filufint 23863 rnelfmlem 23895 rnelfm 23896 fmfnfmlem2 23898 fmfnfmlem3 23899 fmfnfmlem4 23900 fmfnfm 23901 txflf 23949 fclsrest 23967 metust 24502 filnetlem3 36403 |
| Copyright terms: Public domain | W3C validator |