MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filin Structured version   Visualization version   GIF version

Theorem filin 23741
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filin ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)

Proof of Theorem filin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 23735 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasssin 23723 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
31, 2syl3an1 1163 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
4 inss1 4200 . . . . 5 (𝐴𝐵) ⊆ 𝐴
5 filelss 23739 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
64, 5sstrid 3958 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐴𝐵) ⊆ 𝑋)
7 filss 23740 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ (𝐴𝐵) ⊆ 𝑋𝑥 ⊆ (𝐴𝐵))) → (𝐴𝐵) ∈ 𝐹)
873exp2 1355 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → ((𝐴𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
98com23 86 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ((𝐴𝐵) ⊆ 𝑋 → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
109imp 406 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹)))
1110rexlimdv 3132 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
126, 11syldan 591 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
13123adant3 1132 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
143, 13mpd 15 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wrex 3053  cin 3913  wss 3914  cfv 6511  fBascfbas 21252  Filcfil 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-fbas 21261  df-fil 23733
This theorem is referenced by:  isfil2  23743  filfi  23746  filinn0  23747  infil  23750  filconn  23770  filuni  23772  trfil2  23774  trfilss  23776  ufprim  23796  filufint  23807  rnelfmlem  23839  rnelfm  23840  fmfnfmlem2  23842  fmfnfmlem3  23843  fmfnfmlem4  23844  fmfnfm  23845  txflf  23893  fclsrest  23911  metust  24446  filnetlem3  36368
  Copyright terms: Public domain W3C validator