MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filin Structured version   Visualization version   GIF version

Theorem filin 23883
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filin ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)

Proof of Theorem filin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 23877 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasssin 23865 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
31, 2syl3an1 1163 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
4 inss1 4258 . . . . 5 (𝐴𝐵) ⊆ 𝐴
5 filelss 23881 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
64, 5sstrid 4020 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐴𝐵) ⊆ 𝑋)
7 filss 23882 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ (𝐴𝐵) ⊆ 𝑋𝑥 ⊆ (𝐴𝐵))) → (𝐴𝐵) ∈ 𝐹)
873exp2 1354 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → ((𝐴𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
98com23 86 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ((𝐴𝐵) ⊆ 𝑋 → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
109imp 406 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹)))
1110rexlimdv 3159 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
126, 11syldan 590 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
13123adant3 1132 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
143, 13mpd 15 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wrex 3076  cin 3975  wss 3976  cfv 6573  fBascfbas 21375  Filcfil 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875
This theorem is referenced by:  isfil2  23885  filfi  23888  filinn0  23889  infil  23892  filconn  23912  filuni  23914  trfil2  23916  trfilss  23918  ufprim  23938  filufint  23949  rnelfmlem  23981  rnelfm  23982  fmfnfmlem2  23984  fmfnfmlem3  23985  fmfnfmlem4  23986  fmfnfm  23987  txflf  24035  fclsrest  24053  metust  24592  filnetlem3  36346
  Copyright terms: Public domain W3C validator