MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filintn0 Structured version   Visualization version   GIF version

Theorem filintn0 23746
Description: A filter has the finite intersection property. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 20-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filintn0 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)

Proof of Theorem filintn0
StepHypRef Expression
1 elfir 9305 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐹))
2 filfi 23744 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
32adantr 480 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → (fi‘𝐹) = 𝐹)
41, 3eleqtrd 2830 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴𝐹)
5 fileln0 23735 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)
64, 5syldan 591 1 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3903  c0 4284   cint 4896  cfv 6482  Fincfn 8872  ficfi 9300  Filcfil 23730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-2o 8389  df-en 8873  df-fin 8876  df-fi 9301  df-fbas 21258  df-fil 23731
This theorem is referenced by:  alexsublem  23929
  Copyright terms: Public domain W3C validator