Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrng | Structured version Visualization version GIF version |
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
fldcrng | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
2 | eqid 2739 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
3 | eqid 2739 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
4 | eqid 2739 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
5 | 1, 2, 3, 4 | drngoi 35765 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
6 | 5 | simpld 498 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
7 | 6 | anim1i 618 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
8 | df-fld 35806 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 8 | elin2 4097 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
10 | iscrngo 35810 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
11 | 7, 9, 10 | 3imtr4i 295 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ∖ cdif 3850 {csn 4526 × cxp 5533 ran crn 5536 ↾ cres 5537 ‘cfv 6350 1st c1st 7725 2nd c2nd 7726 GrpOpcgr 28437 GIdcgi 28438 RingOpscrngo 35708 DivRingOpscdrng 35762 Com2ccm2 35803 Fldcfld 35805 CRingOpsccring 35807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-iota 6308 df-fun 6352 df-fv 6358 df-1st 7727 df-2nd 7728 df-drngo 35763 df-fld 35806 df-crngo 35808 |
This theorem is referenced by: isfld2 35819 isfldidl 35882 |
Copyright terms: Public domain | W3C validator |