Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fldcrng | Structured version Visualization version GIF version |
Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
fldcrng | ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (1st ‘𝐾) = (1st ‘𝐾) | |
2 | eqid 2738 | . . . . 5 ⊢ (2nd ‘𝐾) = (2nd ‘𝐾) | |
3 | eqid 2738 | . . . . 5 ⊢ ran (1st ‘𝐾) = ran (1st ‘𝐾) | |
4 | eqid 2738 | . . . . 5 ⊢ (GId‘(1st ‘𝐾)) = (GId‘(1st ‘𝐾)) | |
5 | 1, 2, 3, 4 | drngoi 36036 | . . . 4 ⊢ (𝐾 ∈ DivRingOps → (𝐾 ∈ RingOps ∧ ((2nd ‘𝐾) ↾ ((ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}) × (ran (1st ‘𝐾) ∖ {(GId‘(1st ‘𝐾))}))) ∈ GrpOp)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝐾 ∈ DivRingOps → 𝐾 ∈ RingOps) |
7 | 6 | anim1i 614 | . 2 ⊢ ((𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2) → (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) |
8 | df-fld 36077 | . . 3 ⊢ Fld = (DivRingOps ∩ Com2) | |
9 | 8 | elin2 4127 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ Com2)) |
10 | iscrngo 36081 | . 2 ⊢ (𝐾 ∈ CRingOps ↔ (𝐾 ∈ RingOps ∧ 𝐾 ∈ Com2)) | |
11 | 7, 9, 10 | 3imtr4i 291 | 1 ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 × cxp 5578 ran crn 5581 ↾ cres 5582 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GrpOpcgr 28752 GIdcgi 28753 RingOpscrngo 35979 DivRingOpscdrng 36033 Com2ccm2 36074 Fldcfld 36076 CRingOpsccring 36078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 df-drngo 36034 df-fld 36077 df-crngo 36079 |
This theorem is referenced by: isfld2 36090 isfldidl 36153 |
Copyright terms: Public domain | W3C validator |