MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcos Structured version   Visualization version   GIF version

Theorem fmptcos 7126
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
Assertion
Ref Expression
fmptcos (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcos
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 fmptcof.2 . 2 (𝜑𝐹 = (𝑥𝐴𝑅))
3 fmptcof.3 . . 3 (𝜑𝐺 = (𝑦𝐵𝑆))
4 nfcv 2899 . . . 4 𝑧𝑆
5 nfcsb1v 3903 . . . 4 𝑦𝑧 / 𝑦𝑆
6 csbeq1a 3893 . . . 4 (𝑦 = 𝑧𝑆 = 𝑧 / 𝑦𝑆)
74, 5, 6cbvmpt 5228 . . 3 (𝑦𝐵𝑆) = (𝑧𝐵𝑧 / 𝑦𝑆)
83, 7eqtrdi 2787 . 2 (𝜑𝐺 = (𝑧𝐵𝑧 / 𝑦𝑆))
9 csbeq1 3882 . 2 (𝑧 = 𝑅𝑧 / 𝑦𝑆 = 𝑅 / 𝑦𝑆)
101, 2, 8, 9fmptcof 7125 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052  csb 3879  cmpt 5206  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  fmpoco  8099  gsummptf1o  19949  divcncf  25405  gsummpt2d  33048  gsummptfsf1o  33053  fmpocos  42252
  Copyright terms: Public domain W3C validator