Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmptcos | Structured version Visualization version GIF version |
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptcof.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) |
fmptcof.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
fmptcof.3 | ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
Ref | Expression |
---|---|
fmptcos | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | |
2 | fmptcof.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
3 | fmptcof.3 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | |
4 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑧𝑆 | |
5 | nfcsb1v 3853 | . . . 4 ⊢ Ⅎ𝑦⦋𝑧 / 𝑦⦌𝑆 | |
6 | csbeq1a 3842 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑆 = ⦋𝑧 / 𝑦⦌𝑆) | |
7 | 4, 5, 6 | cbvmpt 5181 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆) |
8 | 3, 7 | eqtrdi 2795 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆)) |
9 | csbeq1 3831 | . 2 ⊢ (𝑧 = 𝑅 → ⦋𝑧 / 𝑦⦌𝑆 = ⦋𝑅 / 𝑦⦌𝑆) | |
10 | 1, 2, 8, 9 | fmptcof 6984 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⦋csb 3828 ↦ cmpt 5153 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: fmpoco 7906 gsummptf1o 19479 divcncf 24516 gsummpt2d 31211 |
Copyright terms: Public domain | W3C validator |