|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fmptcos | Structured version Visualization version GIF version | ||
| Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| fmptcof.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | 
| fmptcof.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | 
| fmptcof.3 | ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | 
| Ref | Expression | 
|---|---|
| fmptcos | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmptcof.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | |
| 2 | fmptcof.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
| 3 | fmptcof.3 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | |
| 4 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑧𝑆 | |
| 5 | nfcsb1v 3922 | . . . 4 ⊢ Ⅎ𝑦⦋𝑧 / 𝑦⦌𝑆 | |
| 6 | csbeq1a 3912 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑆 = ⦋𝑧 / 𝑦⦌𝑆) | |
| 7 | 4, 5, 6 | cbvmpt 5252 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆) | 
| 8 | 3, 7 | eqtrdi 2792 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆)) | 
| 9 | csbeq1 3901 | . 2 ⊢ (𝑧 = 𝑅 → ⦋𝑧 / 𝑦⦌𝑆 = ⦋𝑅 / 𝑦⦌𝑆) | |
| 10 | 1, 2, 8, 9 | fmptcof 7149 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⦋csb 3898 ↦ cmpt 5224 ∘ ccom 5688 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 | 
| This theorem is referenced by: fmpoco 8121 gsummptf1o 19982 divcncf 25483 gsummpt2d 33053 gsummptfsf1o 33058 fmpocos 42275 | 
| Copyright terms: Public domain | W3C validator |