MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcos Structured version   Visualization version   GIF version

Theorem fmptcos 6985
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
Assertion
Ref Expression
fmptcos (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcos
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 fmptcof.2 . 2 (𝜑𝐹 = (𝑥𝐴𝑅))
3 fmptcof.3 . . 3 (𝜑𝐺 = (𝑦𝐵𝑆))
4 nfcv 2906 . . . 4 𝑧𝑆
5 nfcsb1v 3853 . . . 4 𝑦𝑧 / 𝑦𝑆
6 csbeq1a 3842 . . . 4 (𝑦 = 𝑧𝑆 = 𝑧 / 𝑦𝑆)
74, 5, 6cbvmpt 5181 . . 3 (𝑦𝐵𝑆) = (𝑧𝐵𝑧 / 𝑦𝑆)
83, 7eqtrdi 2795 . 2 (𝜑𝐺 = (𝑧𝐵𝑧 / 𝑦𝑆))
9 csbeq1 3831 . 2 (𝑧 = 𝑅𝑧 / 𝑦𝑆 = 𝑅 / 𝑦𝑆)
101, 2, 8, 9fmptcof 6984 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  csb 3828  cmpt 5153  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  fmpoco  7906  gsummptf1o  19479  divcncf  24516  gsummpt2d  31211
  Copyright terms: Public domain W3C validator