![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptcos | Structured version Visualization version GIF version |
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptcof.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) |
fmptcof.2 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
fmptcof.3 | ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
Ref | Expression |
---|---|
fmptcos | ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝐵) | |
2 | fmptcof.2 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) | |
3 | fmptcof.3 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) | |
4 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑧𝑆 | |
5 | nfcsb1v 3910 | . . . 4 ⊢ Ⅎ𝑦⦋𝑧 / 𝑦⦌𝑆 | |
6 | csbeq1a 3899 | . . . 4 ⊢ (𝑦 = 𝑧 → 𝑆 = ⦋𝑧 / 𝑦⦌𝑆) | |
7 | 4, 5, 6 | cbvmpt 5249 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆) |
8 | 3, 7 | eqtrdi 2780 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝐵 ↦ ⦋𝑧 / 𝑦⦌𝑆)) |
9 | csbeq1 3888 | . 2 ⊢ (𝑧 = 𝑅 → ⦋𝑧 / 𝑦⦌𝑆 = ⦋𝑅 / 𝑦⦌𝑆) | |
10 | 1, 2, 8, 9 | fmptcof 7120 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ ⦋𝑅 / 𝑦⦌𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⦋csb 3885 ↦ cmpt 5221 ∘ ccom 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 |
This theorem is referenced by: fmpoco 8075 gsummptf1o 19868 divcncf 25286 gsummpt2d 32628 fmpocos 41515 |
Copyright terms: Public domain | W3C validator |