MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcos Structured version   Visualization version   GIF version

Theorem fmptcos 7121
Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
Assertion
Ref Expression
fmptcos (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcos
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 fmptcof.2 . 2 (𝜑𝐹 = (𝑥𝐴𝑅))
3 fmptcof.3 . . 3 (𝜑𝐺 = (𝑦𝐵𝑆))
4 nfcv 2895 . . . 4 𝑧𝑆
5 nfcsb1v 3910 . . . 4 𝑦𝑧 / 𝑦𝑆
6 csbeq1a 3899 . . . 4 (𝑦 = 𝑧𝑆 = 𝑧 / 𝑦𝑆)
74, 5, 6cbvmpt 5249 . . 3 (𝑦𝐵𝑆) = (𝑧𝐵𝑧 / 𝑦𝑆)
83, 7eqtrdi 2780 . 2 (𝜑𝐺 = (𝑧𝐵𝑧 / 𝑦𝑆))
9 csbeq1 3888 . 2 (𝑧 = 𝑅𝑧 / 𝑦𝑆 = 𝑅 / 𝑦𝑆)
101, 2, 8, 9fmptcof 7120 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3053  csb 3885  cmpt 5221  ccom 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541
This theorem is referenced by:  fmpoco  8075  gsummptf1o  19868  divcncf  25286  gsummpt2d  32628  fmpocos  41515
  Copyright terms: Public domain W3C validator