MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofmpt Structured version   Visualization version   GIF version

Theorem cofmpt 7104
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1 (𝜑𝐹:𝐶𝐷)
cofmpt.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
cofmpt (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem cofmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
2 eqidd 2730 . 2 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 cofmpt.1 . . 3 (𝜑𝐹:𝐶𝐷)
43feqmptd 6929 . 2 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
5 fveq2 6858 . 2 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
61, 2, 4, 5fmptco 7101 1 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5188  ccom 5642  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  coof  7677  offsplitfpar  8098  lo1o12  15499  rlimcn1b  15555  rhmcomulmpl  22269  rhmmpl  22270  rhmply1vr1  22274  mdetralt  22495  tsmsmhm  24033  uniioombllem3  25486  ismbfcn2  25539  itg1climres  25615  iblabslem  25729  iblabs  25730  bddmulibl  25740  limccnp  25792  dvcjbr  25853  dvmptcj  25872  dvef  25884  plypf1  26117  lgamgulmlem2  26940  lgamcvg2  26965  lgseisenlem4  27289  gsumwrd2dccat  33007  esumcocn  34070  ftc1anclem6  37692  rhmcomulpsr  42539  rhmpsr  42540  selvvvval  42573  evlselv  42575  fundcmpsurbijinjpreimafv  47408  fundcmpsurinjimaid  47412
  Copyright terms: Public domain W3C validator