MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofmpt Structured version   Visualization version   GIF version

Theorem cofmpt 7086
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1 (𝜑𝐹:𝐶𝐷)
cofmpt.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
cofmpt (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem cofmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
2 eqidd 2730 . 2 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 cofmpt.1 . . 3 (𝜑𝐹:𝐶𝐷)
43feqmptd 6911 . 2 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
5 fveq2 6840 . 2 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
61, 2, 4, 5fmptco 7083 1 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5183  ccom 5635  wf 6495  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507
This theorem is referenced by:  coof  7657  offsplitfpar  8075  lo1o12  15475  rlimcn1b  15531  rhmcomulmpl  22245  rhmmpl  22246  rhmply1vr1  22250  mdetralt  22471  tsmsmhm  24009  uniioombllem3  25462  ismbfcn2  25515  itg1climres  25591  iblabslem  25705  iblabs  25706  bddmulibl  25716  limccnp  25768  dvcjbr  25829  dvmptcj  25848  dvef  25860  plypf1  26093  lgamgulmlem2  26916  lgamcvg2  26941  lgseisenlem4  27265  gsumwrd2dccat  32980  esumcocn  34043  ftc1anclem6  37665  rhmcomulpsr  42512  rhmpsr  42513  selvvvval  42546  evlselv  42548  fundcmpsurbijinjpreimafv  47381  fundcmpsurinjimaid  47385
  Copyright terms: Public domain W3C validator