Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cofmpt | Structured version Visualization version GIF version |
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
cofmpt.1 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
cofmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
cofmpt | ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofmpt.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqidd 2740 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | cofmpt.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) | |
4 | 3 | feqmptd 6846 | . 2 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
5 | fveq2 6783 | . 2 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
6 | 1, 2, 4, 5 | fmptco 7010 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5158 ∘ ccom 5594 ⟶wf 6433 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 |
This theorem is referenced by: offsplitfpar 7969 lo1o12 15251 rlimcn1b 15307 mdetralt 21766 tsmsmhm 23306 uniioombllem3 24758 ismbfcn2 24811 itg1climres 24888 iblabslem 25001 iblabs 25002 bddmulibl 25012 limccnp 25064 dvcjbr 25122 dvmptcj 25141 dvef 25153 plypf1 25382 lgamgulmlem2 26188 lgamcvg2 26213 lgseisenlem4 26535 esumcocn 32057 ftc1anclem6 35864 fundcmpsurbijinjpreimafv 44870 fundcmpsurinjimaid 44874 |
Copyright terms: Public domain | W3C validator |