| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofmpt | Structured version Visualization version GIF version | ||
| Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| cofmpt.1 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
| cofmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| cofmpt | ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofmpt.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 3 | cofmpt.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) | |
| 4 | 3 | feqmptd 6890 | . 2 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 5 | fveq2 6822 | . 2 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 6 | 1, 2, 4, 5 | fmptco 7062 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: coof 7634 offsplitfpar 8049 lo1o12 15440 rlimcn1b 15496 rhmcomulmpl 22297 rhmmpl 22298 rhmply1vr1 22302 mdetralt 22523 tsmsmhm 24061 uniioombllem3 25513 ismbfcn2 25566 itg1climres 25642 iblabslem 25756 iblabs 25757 bddmulibl 25767 limccnp 25819 dvcjbr 25880 dvmptcj 25899 dvef 25911 plypf1 26144 lgamgulmlem2 26967 lgamcvg2 26992 lgseisenlem4 27316 gsumwrd2dccat 33047 esumcocn 34093 ftc1anclem6 37746 rhmcomulpsr 42592 rhmpsr 42593 selvvvval 42626 evlselv 42628 fundcmpsurbijinjpreimafv 47446 fundcmpsurinjimaid 47450 |
| Copyright terms: Public domain | W3C validator |