MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofmpt Structured version   Visualization version   GIF version

Theorem cofmpt 7066
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
cofmpt.1 (𝜑𝐹:𝐶𝐷)
cofmpt.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
cofmpt (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem cofmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cofmpt.2 . 2 ((𝜑𝑥𝐴) → 𝐵𝐶)
2 eqidd 2730 . 2 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 cofmpt.1 . . 3 (𝜑𝐹:𝐶𝐷)
43feqmptd 6891 . 2 (𝜑𝐹 = (𝑦𝐶 ↦ (𝐹𝑦)))
5 fveq2 6822 . 2 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
61, 2, 4, 5fmptco 7063 1 (𝜑 → (𝐹 ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5173  ccom 5623  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by:  coof  7637  offsplitfpar  8052  lo1o12  15440  rlimcn1b  15496  rhmcomulmpl  22267  rhmmpl  22268  rhmply1vr1  22272  mdetralt  22493  tsmsmhm  24031  uniioombllem3  25484  ismbfcn2  25537  itg1climres  25613  iblabslem  25727  iblabs  25728  bddmulibl  25738  limccnp  25790  dvcjbr  25851  dvmptcj  25870  dvef  25882  plypf1  26115  lgamgulmlem2  26938  lgamcvg2  26963  lgseisenlem4  27287  gsumwrd2dccat  33020  esumcocn  34047  ftc1anclem6  37678  rhmcomulpsr  42524  rhmpsr  42525  selvvvval  42558  evlselv  42560  fundcmpsurbijinjpreimafv  47391  fundcmpsurinjimaid  47395
  Copyright terms: Public domain W3C validator