![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofmpt | Structured version Visualization version GIF version |
Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
cofmpt.1 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
cofmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
cofmpt | ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofmpt.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | eqidd 2741 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | cofmpt.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) | |
4 | 3 | feqmptd 6990 | . 2 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
5 | fveq2 6920 | . 2 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
6 | 1, 2, 4, 5 | fmptco 7163 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: coof 7737 offsplitfpar 8160 lo1o12 15579 rlimcn1b 15635 rhmcomulmpl 22407 rhmmpl 22408 rhmply1vr1 22412 mdetralt 22635 tsmsmhm 24175 uniioombllem3 25639 ismbfcn2 25692 itg1climres 25769 iblabslem 25883 iblabs 25884 bddmulibl 25894 limccnp 25946 dvcjbr 26007 dvmptcj 26026 dvef 26038 plypf1 26271 lgamgulmlem2 27091 lgamcvg2 27116 lgseisenlem4 27440 esumcocn 34044 ftc1anclem6 37658 rhmcomulpsr 42506 rhmpsr 42507 selvvvval 42540 evlselv 42542 fundcmpsurbijinjpreimafv 47281 fundcmpsurinjimaid 47285 |
Copyright terms: Public domain | W3C validator |