| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofmpt | Structured version Visualization version GIF version | ||
| Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| cofmpt.1 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
| cofmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| cofmpt | ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofmpt.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 3 | cofmpt.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) | |
| 4 | 3 | feqmptd 6929 | . 2 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 5 | fveq2 6858 | . 2 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 6 | 1, 2, 4, 5 | fmptco 7101 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: coof 7677 offsplitfpar 8098 lo1o12 15499 rlimcn1b 15555 rhmcomulmpl 22269 rhmmpl 22270 rhmply1vr1 22274 mdetralt 22495 tsmsmhm 24033 uniioombllem3 25486 ismbfcn2 25539 itg1climres 25615 iblabslem 25729 iblabs 25730 bddmulibl 25740 limccnp 25792 dvcjbr 25853 dvmptcj 25872 dvef 25884 plypf1 26117 lgamgulmlem2 26940 lgamcvg2 26965 lgseisenlem4 27289 gsumwrd2dccat 33007 esumcocn 34070 ftc1anclem6 37692 rhmcomulpsr 42539 rhmpsr 42540 selvvvval 42573 evlselv 42575 fundcmpsurbijinjpreimafv 47408 fundcmpsurinjimaid 47412 |
| Copyright terms: Public domain | W3C validator |