| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofmpt | Structured version Visualization version GIF version | ||
| Description: Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| cofmpt.1 | ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) |
| cofmpt.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| cofmpt | ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofmpt.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | eqidd 2735 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 3 | cofmpt.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐷) | |
| 4 | 3 | feqmptd 6957 | . 2 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐶 ↦ (𝐹‘𝑦))) |
| 5 | fveq2 6886 | . 2 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 6 | 1, 2, 4, 5 | fmptco 7129 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 |
| This theorem is referenced by: coof 7703 offsplitfpar 8126 lo1o12 15552 rlimcn1b 15608 rhmcomulmpl 22335 rhmmpl 22336 rhmply1vr1 22340 mdetralt 22563 tsmsmhm 24101 uniioombllem3 25557 ismbfcn2 25610 itg1climres 25686 iblabslem 25800 iblabs 25801 bddmulibl 25811 limccnp 25863 dvcjbr 25924 dvmptcj 25943 dvef 25955 plypf1 26188 lgamgulmlem2 27010 lgamcvg2 27035 lgseisenlem4 27359 gsumwrd2dccat 33014 esumcocn 34056 ftc1anclem6 37680 rhmcomulpsr 42540 rhmpsr 42541 selvvvval 42574 evlselv 42576 fundcmpsurbijinjpreimafv 47367 fundcmpsurinjimaid 47371 |
| Copyright terms: Public domain | W3C validator |