Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptunsnop Structured version   Visualization version   GIF version

Theorem fmptunsnop 32681
Description: Two ways to express a function with a value replaced. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fmptunsnop.1 (𝜑𝐹 Fn 𝐴)
fmptunsnop.2 (𝜑𝑋𝐴)
fmptunsnop.3 (𝜑𝑌𝐵)
Assertion
Ref Expression
fmptunsnop (𝜑 → (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fmptunsnop
StepHypRef Expression
1 mptun 6627 . 2 (𝑥 ∈ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) ∪ (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
2 fmptunsnop.2 . . . 4 (𝜑𝑋𝐴)
3 difsnid 4759 . . . 4 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
42, 3syl 17 . . 3 (𝜑 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
54mpteq1d 5179 . 2 (𝜑 → (𝑥 ∈ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
6 eldifsni 4739 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥𝑋)
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → 𝑥𝑋)
87neneqd 2933 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → ¬ 𝑥 = 𝑋)
98iffalsed 4483 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = (𝐹𝑥))
109mpteq2dva 5182 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ (𝐹𝑥)))
11 fmptunsnop.1 . . . . . 6 (𝜑𝐹 Fn 𝐴)
12 dffn3 6663 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1311, 12sylib 218 . . . . 5 (𝜑𝐹:𝐴⟶ran 𝐹)
14 difssd 4084 . . . . 5 (𝜑 → (𝐴 ∖ {𝑋}) ⊆ 𝐴)
1513, 14feqresmpt 6891 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝑋})) = (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ (𝐹𝑥)))
1610, 15eqtr4d 2769 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
17 iftrue 4478 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = 𝑌)
1817adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = 𝑌)
19 fmptunsnop.3 . . . . 5 (𝜑𝑌𝐵)
2018, 2, 19fmptsnd 7103 . . . 4 (𝜑 → {⟨𝑋, 𝑌⟩} = (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
2120eqcomd 2737 . . 3 (𝜑 → (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = {⟨𝑋, 𝑌⟩})
2216, 21uneq12d 4116 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) ∪ (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
231, 5, 223eqtr3a 2790 1 (𝜑 → (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  cun 3895  ifcif 4472  {csn 4573  cop 4579  cmpt 5170  ran crn 5615  cres 5616   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  elrgspnlem4  33212
  Copyright terms: Public domain W3C validator