Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptunsnop Structured version   Visualization version   GIF version

Theorem fmptunsnop 32623
Description: Two ways to express a function with a value replaced. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
fmptunsnop.1 (𝜑𝐹 Fn 𝐴)
fmptunsnop.2 (𝜑𝑋𝐴)
fmptunsnop.3 (𝜑𝑌𝐵)
Assertion
Ref Expression
fmptunsnop (𝜑 → (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fmptunsnop
StepHypRef Expression
1 mptun 6683 . 2 (𝑥 ∈ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) ∪ (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
2 fmptunsnop.2 . . . 4 (𝜑𝑋𝐴)
3 difsnid 4786 . . . 4 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
42, 3syl 17 . . 3 (𝜑 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
54mpteq1d 5210 . 2 (𝜑 → (𝑥 ∈ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
6 eldifsni 4766 . . . . . . . 8 (𝑥 ∈ (𝐴 ∖ {𝑋}) → 𝑥𝑋)
76adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → 𝑥𝑋)
87neneqd 2937 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → ¬ 𝑥 = 𝑋)
98iffalsed 4511 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = (𝐹𝑥))
109mpteq2dva 5214 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ (𝐹𝑥)))
11 fmptunsnop.1 . . . . . 6 (𝜑𝐹 Fn 𝐴)
12 dffn3 6717 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1311, 12sylib 218 . . . . 5 (𝜑𝐹:𝐴⟶ran 𝐹)
14 difssd 4112 . . . . 5 (𝜑 → (𝐴 ∖ {𝑋}) ⊆ 𝐴)
1513, 14feqresmpt 6947 . . . 4 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝑋})) = (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ (𝐹𝑥)))
1610, 15eqtr4d 2773 . . 3 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = (𝐹 ↾ (𝐴 ∖ {𝑋})))
17 iftrue 4506 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = 𝑌)
1817adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)) = 𝑌)
19 fmptunsnop.3 . . . . 5 (𝜑𝑌𝐵)
2018, 2, 19fmptsnd 7160 . . . 4 (𝜑 → {⟨𝑋, 𝑌⟩} = (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))))
2120eqcomd 2741 . . 3 (𝜑 → (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = {⟨𝑋, 𝑌⟩})
2216, 21uneq12d 4144 . 2 (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝑋}) ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) ∪ (𝑥 ∈ {𝑋} ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥)))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
231, 5, 223eqtr3a 2794 1 (𝜑 → (𝑥𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  ifcif 4500  {csn 4601  cop 4607  cmpt 5201  ran crn 5655  cres 5656   Fn wfn 6525  wf 6526  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538
This theorem is referenced by:  elrgspnlem4  33186
  Copyright terms: Public domain W3C validator