| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6695 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6895 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6845 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5190 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 ↦ cmpt 5176 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: pwfseqlem5 10576 pfxres 14604 gsumpt 19859 dpjidcl 19957 gsumle 20042 regsumsupp 21547 tsmsxplem2 24057 dvmulbr 25857 dvmulbrOLD 25858 dvlip 25914 lhop1lem 25934 loglesqrt 26687 jensenlem1 26913 jensen 26915 amgm 26917 ushgredgedg 29192 ushgredgedgloop 29194 fisuppov1 32639 fmptunsnop 32656 mgcf1o 32958 gsumfs2d 33021 gsumzresunsn 33022 gsumpart 33023 gsumhashmul 33027 rprmdvdsprod 33484 coinflippv 34454 fdvposlt 34569 fdvposle 34571 logdivsqrle 34620 ftc1cnnclem 37673 dvasin 37686 dvacos 37687 dvreasin 37688 dvreacos 37689 areacirclem1 37690 dvrelog2 42040 dvrelog3 42041 aks6d1c2 42106 aks6d1c6lem3 42148 readvrec2 42337 readvrec 42338 resuppsinopn 42339 cantnf2 43301 limsupvaluz2 45723 supcnvlimsup 45725 itgperiod 45966 fourierdlem69 46160 fourierdlem73 46164 fourierdlem74 46165 fourierdlem75 46166 fourierdlem76 46167 fourierdlem81 46172 fourierdlem85 46176 fourierdlem88 46179 fourierdlem92 46183 fourierdlem97 46188 fourierdlem100 46191 fourierdlem101 46192 fourierdlem103 46194 fourierdlem104 46195 fourierdlem107 46198 fourierdlem111 46202 fourierdlem112 46203 fouriersw 46216 sge0tsms 46365 sge0resrnlem 46388 meadjiunlem 46450 omeunle 46501 isomenndlem 46515 |
| Copyright terms: Public domain | W3C validator |