| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6727 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6929 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6877 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5202 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 ↦ cmpt 5188 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: pwfseqlem5 10616 pfxres 14644 gsumpt 19892 dpjidcl 19990 regsumsupp 21531 tsmsxplem2 24041 dvmulbr 25841 dvmulbrOLD 25842 dvlip 25898 lhop1lem 25918 loglesqrt 26671 jensenlem1 26897 jensen 26899 amgm 26901 ushgredgedg 29156 ushgredgedgloop 29158 fisuppov1 32606 fmptunsnop 32623 mgcf1o 32929 gsumfs2d 32995 gsumzresunsn 32996 gsumpart 32997 gsumhashmul 33001 gsumle 33038 rprmdvdsprod 33505 coinflippv 34475 fdvposlt 34590 fdvposle 34592 logdivsqrle 34641 ftc1cnnclem 37685 dvasin 37698 dvacos 37699 dvreasin 37700 dvreacos 37701 areacirclem1 37702 dvrelog2 42052 dvrelog3 42053 aks6d1c2 42118 aks6d1c6lem3 42160 readvrec2 42349 readvrec 42350 resuppsinopn 42351 cantnf2 43314 limsupvaluz2 45736 supcnvlimsup 45738 itgperiod 45979 fourierdlem69 46173 fourierdlem73 46177 fourierdlem74 46178 fourierdlem75 46179 fourierdlem76 46180 fourierdlem81 46185 fourierdlem85 46189 fourierdlem88 46192 fourierdlem92 46196 fourierdlem97 46201 fourierdlem100 46204 fourierdlem101 46205 fourierdlem103 46207 fourierdlem104 46208 fourierdlem107 46211 fourierdlem111 46215 fourierdlem112 46216 fouriersw 46229 sge0tsms 46378 sge0resrnlem 46401 meadjiunlem 46463 omeunle 46514 isomenndlem 46528 |
| Copyright terms: Public domain | W3C validator |