| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6730 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6932 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6880 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5205 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2781 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 ↦ cmpt 5191 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: pwfseqlem5 10623 pfxres 14651 gsumpt 19899 dpjidcl 19997 regsumsupp 21538 tsmsxplem2 24048 dvmulbr 25848 dvmulbrOLD 25849 dvlip 25905 lhop1lem 25925 loglesqrt 26678 jensenlem1 26904 jensen 26906 amgm 26908 ushgredgedg 29163 ushgredgedgloop 29165 fisuppov1 32613 fmptunsnop 32630 mgcf1o 32936 gsumfs2d 33002 gsumzresunsn 33003 gsumpart 33004 gsumhashmul 33008 gsumle 33045 rprmdvdsprod 33512 coinflippv 34482 fdvposlt 34597 fdvposle 34599 logdivsqrle 34648 ftc1cnnclem 37692 dvasin 37705 dvacos 37706 dvreasin 37707 dvreacos 37708 areacirclem1 37709 dvrelog2 42059 dvrelog3 42060 aks6d1c2 42125 aks6d1c6lem3 42167 readvrec2 42356 readvrec 42357 resuppsinopn 42358 cantnf2 43321 limsupvaluz2 45743 supcnvlimsup 45745 itgperiod 45986 fourierdlem69 46180 fourierdlem73 46184 fourierdlem74 46185 fourierdlem75 46186 fourierdlem76 46187 fourierdlem81 46192 fourierdlem85 46196 fourierdlem88 46199 fourierdlem92 46203 fourierdlem97 46208 fourierdlem100 46211 fourierdlem101 46212 fourierdlem103 46214 fourierdlem104 46215 fourierdlem107 46218 fourierdlem111 46222 fourierdlem112 46223 fouriersw 46236 sge0tsms 46385 sge0resrnlem 46408 meadjiunlem 46470 omeunle 46521 isomenndlem 46535 |
| Copyright terms: Public domain | W3C validator |