| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6690 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6890 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6841 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5186 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2782 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3902 ↦ cmpt 5172 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: pwfseqlem5 10554 pfxres 14587 gsumpt 19875 dpjidcl 19973 gsumle 20058 regsumsupp 21560 tsmsxplem2 24070 dvmulbr 25869 dvmulbrOLD 25870 dvlip 25926 lhop1lem 25946 loglesqrt 26699 jensenlem1 26925 jensen 26927 amgm 26929 ushgredgedg 29208 ushgredgedgloop 29210 fisuppov1 32662 fmptunsnop 32679 mgcf1o 32982 gsumfs2d 33033 gsumzresunsn 33034 gsumpart 33035 gsumhashmul 33039 rprmdvdsprod 33497 coinflippv 34495 fdvposlt 34610 fdvposle 34612 logdivsqrle 34661 ftc1cnnclem 37737 dvasin 37750 dvacos 37751 dvreasin 37752 dvreacos 37753 areacirclem1 37754 dvrelog2 42103 dvrelog3 42104 aks6d1c2 42169 aks6d1c6lem3 42211 readvrec2 42400 readvrec 42401 resuppsinopn 42402 cantnf2 43364 limsupvaluz2 45782 supcnvlimsup 45784 itgperiod 46025 fourierdlem69 46219 fourierdlem73 46223 fourierdlem74 46224 fourierdlem75 46225 fourierdlem76 46226 fourierdlem81 46231 fourierdlem85 46235 fourierdlem88 46238 fourierdlem92 46242 fourierdlem97 46247 fourierdlem100 46250 fourierdlem101 46251 fourierdlem103 46253 fourierdlem104 46254 fourierdlem107 46257 fourierdlem111 46261 fourierdlem112 46262 fouriersw 46275 sge0tsms 46424 sge0resrnlem 46447 meadjiunlem 46509 omeunle 46560 isomenndlem 46574 |
| Copyright terms: Public domain | W3C validator |