| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6744 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6946 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6894 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5216 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2786 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6526 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 |
| This theorem is referenced by: pwfseqlem5 10675 pfxres 14695 gsumpt 19941 dpjidcl 20039 regsumsupp 21580 tsmsxplem2 24090 dvmulbr 25891 dvmulbrOLD 25892 dvlip 25948 lhop1lem 25968 loglesqrt 26721 jensenlem1 26947 jensen 26949 amgm 26951 ushgredgedg 29154 ushgredgedgloop 29156 fisuppov1 32606 fmptunsnop 32623 mgcf1o 32929 gsumfs2d 32995 gsumzresunsn 32996 gsumpart 32997 gsumhashmul 33001 gsumle 33038 rprmdvdsprod 33495 coinflippv 34462 fdvposlt 34577 fdvposle 34579 logdivsqrle 34628 ftc1cnnclem 37661 dvasin 37674 dvacos 37675 dvreasin 37676 dvreacos 37677 areacirclem1 37678 dvrelog2 42023 dvrelog3 42024 aks6d1c2 42089 aks6d1c6lem3 42131 readvrec2 42351 readvrec 42352 resuppsinopn 42353 cantnf2 43296 limsupvaluz2 45715 supcnvlimsup 45717 itgperiod 45958 fourierdlem69 46152 fourierdlem73 46156 fourierdlem74 46157 fourierdlem75 46158 fourierdlem76 46159 fourierdlem81 46164 fourierdlem85 46168 fourierdlem88 46171 fourierdlem92 46175 fourierdlem97 46180 fourierdlem100 46183 fourierdlem101 46184 fourierdlem103 46186 fourierdlem104 46187 fourierdlem107 46190 fourierdlem111 46194 fourierdlem112 46195 fouriersw 46208 sge0tsms 46357 sge0resrnlem 46380 meadjiunlem 46442 omeunle 46493 isomenndlem 46507 |
| Copyright terms: Public domain | W3C validator |