| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6697 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6898 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6849 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5190 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2784 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 ↦ cmpt 5176 ↾ cres 5623 ⟶wf 6484 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 |
| This theorem is referenced by: pwfseqlem5 10563 pfxres 14591 gsumpt 19878 dpjidcl 19976 gsumle 20061 regsumsupp 21563 tsmsxplem2 24072 dvmulbr 25871 dvmulbrOLD 25872 dvlip 25928 lhop1lem 25948 loglesqrt 26701 jensenlem1 26927 jensen 26929 amgm 26931 ushgredgedg 29211 ushgredgedgloop 29213 fisuppov1 32670 fmptunsnop 32687 mgcf1o 32993 gsumfs2d 33044 gsumzresunsn 33045 gsumpart 33046 gsumhashmul 33050 rprmdvdsprod 33508 coinflippv 34520 fdvposlt 34635 fdvposle 34637 logdivsqrle 34686 ftc1cnnclem 37754 dvasin 37767 dvacos 37768 dvreasin 37769 dvreacos 37770 areacirclem1 37771 dvrelog2 42180 dvrelog3 42181 aks6d1c2 42246 aks6d1c6lem3 42288 readvrec2 42482 readvrec 42483 resuppsinopn 42484 cantnf2 43445 limsupvaluz2 45863 supcnvlimsup 45865 itgperiod 46106 fourierdlem69 46300 fourierdlem73 46304 fourierdlem74 46305 fourierdlem75 46306 fourierdlem76 46307 fourierdlem81 46312 fourierdlem85 46316 fourierdlem88 46319 fourierdlem92 46323 fourierdlem97 46328 fourierdlem100 46331 fourierdlem101 46332 fourierdlem103 46334 fourierdlem104 46335 fourierdlem107 46338 fourierdlem111 46342 fourierdlem112 46343 fouriersw 46356 sge0tsms 46505 sge0resrnlem 46528 meadjiunlem 46590 omeunle 46641 isomenndlem 46655 |
| Copyright terms: Public domain | W3C validator |