Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6638 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6832 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6788 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5182 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2796 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊆ wss 3892 ↦ cmpt 5162 ↾ cres 5591 ⟶wf 6427 ‘cfv 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fv 6439 |
This theorem is referenced by: pwfseqlem5 10418 pfxres 14388 gsumpt 19559 dpjidcl 19657 regsumsupp 20823 tsmsxplem2 23301 dvmulbr 25099 dvlip 25153 lhop1lem 25173 loglesqrt 25907 jensenlem1 26132 jensen 26134 amgm 26136 ushgredgedg 27592 ushgredgedgloop 27594 mgcf1o 31275 gsumzresunsn 31308 gsumpart 31309 gsumhashmul 31310 gsumle 31344 coinflippv 32444 fdvposlt 32573 fdvposle 32575 logdivsqrle 32624 ftc1cnnclem 35842 dvasin 35855 dvacos 35856 dvreasin 35857 dvreacos 35858 areacirclem1 35859 dvrelog2 40067 dvrelog3 40068 limsupvaluz2 43248 supcnvlimsup 43250 itgperiod 43491 fourierdlem69 43685 fourierdlem73 43689 fourierdlem74 43690 fourierdlem75 43691 fourierdlem76 43692 fourierdlem81 43697 fourierdlem85 43701 fourierdlem88 43704 fourierdlem92 43708 fourierdlem97 43713 fourierdlem100 43716 fourierdlem101 43717 fourierdlem103 43719 fourierdlem104 43720 fourierdlem107 43723 fourierdlem111 43727 fourierdlem112 43728 fouriersw 43741 sge0tsms 43887 sge0resrnlem 43910 meadjiunlem 43972 omeunle 44023 isomenndlem 44037 |
Copyright terms: Public domain | W3C validator |