Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6641 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6837 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6793 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5177 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2794 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 ↦ cmpt 5157 ↾ cres 5591 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: pwfseqlem5 10419 pfxres 14392 gsumpt 19563 dpjidcl 19661 regsumsupp 20827 tsmsxplem2 23305 dvmulbr 25103 dvlip 25157 lhop1lem 25177 loglesqrt 25911 jensenlem1 26136 jensen 26138 amgm 26140 ushgredgedg 27596 ushgredgedgloop 27598 mgcf1o 31281 gsumzresunsn 31314 gsumpart 31315 gsumhashmul 31316 gsumle 31350 coinflippv 32450 fdvposlt 32579 fdvposle 32581 logdivsqrle 32630 ftc1cnnclem 35848 dvasin 35861 dvacos 35862 dvreasin 35863 dvreacos 35864 areacirclem1 35865 dvrelog2 40072 dvrelog3 40073 limsupvaluz2 43279 supcnvlimsup 43281 itgperiod 43522 fourierdlem69 43716 fourierdlem73 43720 fourierdlem74 43721 fourierdlem75 43722 fourierdlem76 43723 fourierdlem81 43728 fourierdlem85 43732 fourierdlem88 43735 fourierdlem92 43739 fourierdlem97 43744 fourierdlem100 43747 fourierdlem101 43748 fourierdlem103 43750 fourierdlem104 43751 fourierdlem107 43754 fourierdlem111 43758 fourierdlem112 43759 fouriersw 43772 sge0tsms 43918 sge0resrnlem 43941 meadjiunlem 44003 omeunle 44054 isomenndlem 44068 |
Copyright terms: Public domain | W3C validator |