| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6745 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6947 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6895 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5216 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2786 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: pwfseqlem5 10677 pfxres 14697 gsumpt 19943 dpjidcl 20041 regsumsupp 21582 tsmsxplem2 24092 dvmulbr 25893 dvmulbrOLD 25894 dvlip 25950 lhop1lem 25970 loglesqrt 26723 jensenlem1 26949 jensen 26951 amgm 26953 ushgredgedg 29208 ushgredgedgloop 29210 fisuppov1 32660 fmptunsnop 32677 mgcf1o 32983 gsumfs2d 33049 gsumzresunsn 33050 gsumpart 33051 gsumhashmul 33055 gsumle 33092 rprmdvdsprod 33549 coinflippv 34516 fdvposlt 34631 fdvposle 34633 logdivsqrle 34682 ftc1cnnclem 37715 dvasin 37728 dvacos 37729 dvreasin 37730 dvreacos 37731 areacirclem1 37732 dvrelog2 42077 dvrelog3 42078 aks6d1c2 42143 aks6d1c6lem3 42185 readvrec2 42404 readvrec 42405 resuppsinopn 42406 cantnf2 43349 limsupvaluz2 45767 supcnvlimsup 45769 itgperiod 46010 fourierdlem69 46204 fourierdlem73 46208 fourierdlem74 46209 fourierdlem75 46210 fourierdlem76 46211 fourierdlem81 46216 fourierdlem85 46220 fourierdlem88 46223 fourierdlem92 46227 fourierdlem97 46232 fourierdlem100 46235 fourierdlem101 46236 fourierdlem103 46238 fourierdlem104 46239 fourierdlem107 46242 fourierdlem111 46246 fourierdlem112 46247 fouriersw 46260 sge0tsms 46409 sge0resrnlem 46432 meadjiunlem 46494 omeunle 46545 isomenndlem 46559 |
| Copyright terms: Public domain | W3C validator |