![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6759 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6961 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6911 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5252 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2787 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3949 ↦ cmpt 5232 ↾ cres 5679 ⟶wf 6540 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 |
This theorem is referenced by: pwfseqlem5 10661 pfxres 14634 gsumpt 19872 dpjidcl 19970 regsumsupp 21395 tsmsxplem2 23879 dvmulbr 25689 dvlip 25743 lhop1lem 25763 loglesqrt 26499 jensenlem1 26724 jensen 26726 amgm 26728 ushgredgedg 28750 ushgredgedgloop 28752 mgcf1o 32437 gsumzresunsn 32473 gsumpart 32474 gsumhashmul 32475 gsumle 32509 coinflippv 33777 fdvposlt 33906 fdvposle 33908 logdivsqrle 33957 gg-dvmulbr 35462 ftc1cnnclem 36863 dvasin 36876 dvacos 36877 dvreasin 36878 dvreacos 36879 areacirclem1 36880 dvrelog2 41236 dvrelog3 41237 cantnf2 42378 limsupvaluz2 44754 supcnvlimsup 44756 itgperiod 44997 fourierdlem69 45191 fourierdlem73 45195 fourierdlem74 45196 fourierdlem75 45197 fourierdlem76 45198 fourierdlem81 45203 fourierdlem85 45207 fourierdlem88 45210 fourierdlem92 45214 fourierdlem97 45219 fourierdlem100 45222 fourierdlem101 45223 fourierdlem103 45225 fourierdlem104 45226 fourierdlem107 45229 fourierdlem111 45233 fourierdlem112 45234 fouriersw 45247 sge0tsms 45396 sge0resrnlem 45419 meadjiunlem 45481 omeunle 45532 isomenndlem 45546 |
Copyright terms: Public domain | W3C validator |