![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6788 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6990 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6939 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5269 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2796 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 ↦ cmpt 5249 ↾ cres 5702 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: pwfseqlem5 10732 pfxres 14727 gsumpt 20004 dpjidcl 20102 regsumsupp 21663 tsmsxplem2 24183 dvmulbr 25995 dvmulbrOLD 25996 dvlip 26052 lhop1lem 26072 loglesqrt 26822 jensenlem1 27048 jensen 27050 amgm 27052 ushgredgedg 29264 ushgredgedgloop 29266 mgcf1o 32976 gsumzresunsn 33037 gsumpart 33038 gsumhashmul 33040 gsumle 33074 rprmdvdsprod 33527 coinflippv 34448 fdvposlt 34576 fdvposle 34578 logdivsqrle 34627 ftc1cnnclem 37651 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem1 37668 dvrelog2 42021 dvrelog3 42022 aks6d1c2 42087 aks6d1c6lem3 42129 cantnf2 43287 limsupvaluz2 45659 supcnvlimsup 45661 itgperiod 45902 fourierdlem69 46096 fourierdlem73 46100 fourierdlem74 46101 fourierdlem75 46102 fourierdlem76 46103 fourierdlem81 46108 fourierdlem85 46112 fourierdlem88 46115 fourierdlem92 46119 fourierdlem97 46124 fourierdlem100 46127 fourierdlem101 46128 fourierdlem103 46130 fourierdlem104 46131 fourierdlem107 46134 fourierdlem111 46138 fourierdlem112 46139 fouriersw 46152 sge0tsms 46301 sge0resrnlem 46324 meadjiunlem 46386 omeunle 46437 isomenndlem 46451 |
Copyright terms: Public domain | W3C validator |