Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6625 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6819 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6775 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5173 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2795 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 ↦ cmpt 5153 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: pwfseqlem5 10350 pfxres 14320 gsumpt 19478 dpjidcl 19576 regsumsupp 20739 tsmsxplem2 23213 dvmulbr 25008 dvlip 25062 lhop1lem 25082 loglesqrt 25816 jensenlem1 26041 jensen 26043 amgm 26045 ushgredgedg 27499 ushgredgedgloop 27501 mgcf1o 31183 gsumzresunsn 31216 gsumpart 31217 gsumhashmul 31218 gsumle 31252 coinflippv 32350 fdvposlt 32479 fdvposle 32481 logdivsqrle 32530 ftc1cnnclem 35775 dvasin 35788 dvacos 35789 dvreasin 35790 dvreacos 35791 areacirclem1 35792 dvrelog2 40000 dvrelog3 40001 limsupvaluz2 43169 supcnvlimsup 43171 itgperiod 43412 fourierdlem69 43606 fourierdlem73 43610 fourierdlem74 43611 fourierdlem75 43612 fourierdlem76 43613 fourierdlem81 43618 fourierdlem85 43622 fourierdlem88 43625 fourierdlem92 43629 fourierdlem97 43634 fourierdlem100 43637 fourierdlem101 43638 fourierdlem103 43640 fourierdlem104 43641 fourierdlem107 43644 fourierdlem111 43648 fourierdlem112 43649 fouriersw 43662 sge0tsms 43808 sge0resrnlem 43831 meadjiunlem 43893 omeunle 43944 isomenndlem 43958 |
Copyright terms: Public domain | W3C validator |