![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6758 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6960 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6910 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 5251 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | eqtrdi 2788 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3948 ↦ cmpt 5231 ↾ cres 5678 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: pwfseqlem5 10660 pfxres 14631 gsumpt 19832 dpjidcl 19930 regsumsupp 21181 tsmsxplem2 23665 dvmulbr 25463 dvlip 25517 lhop1lem 25537 loglesqrt 26273 jensenlem1 26498 jensen 26500 amgm 26502 ushgredgedg 28524 ushgredgedgloop 28526 mgcf1o 32211 gsumzresunsn 32247 gsumpart 32248 gsumhashmul 32249 gsumle 32283 coinflippv 33551 fdvposlt 33680 fdvposle 33682 logdivsqrle 33731 gg-dvmulbr 35244 ftc1cnnclem 36645 dvasin 36658 dvacos 36659 dvreasin 36660 dvreacos 36661 areacirclem1 36662 dvrelog2 41015 dvrelog3 41016 cantnf2 42157 limsupvaluz2 44533 supcnvlimsup 44535 itgperiod 44776 fourierdlem69 44970 fourierdlem73 44974 fourierdlem74 44975 fourierdlem75 44976 fourierdlem76 44977 fourierdlem81 44982 fourierdlem85 44986 fourierdlem88 44989 fourierdlem92 44993 fourierdlem97 44998 fourierdlem100 45001 fourierdlem101 45002 fourierdlem103 45004 fourierdlem104 45005 fourierdlem107 45008 fourierdlem111 45012 fourierdlem112 45013 fouriersw 45026 sge0tsms 45175 sge0resrnlem 45198 meadjiunlem 45260 omeunle 45311 isomenndlem 45325 |
Copyright terms: Public domain | W3C validator |