| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version | ||
| Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | 1, 2 | fssresd 6775 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 4 | 3 | feqmptd 6977 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 5 | fvres 6925 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
| 6 | 5 | mpteq2ia 5245 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
| 7 | 4, 6 | eqtrdi 2793 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3951 ↦ cmpt 5225 ↾ cres 5687 ⟶wf 6557 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 |
| This theorem is referenced by: pwfseqlem5 10703 pfxres 14717 gsumpt 19980 dpjidcl 20078 regsumsupp 21640 tsmsxplem2 24162 dvmulbr 25975 dvmulbrOLD 25976 dvlip 26032 lhop1lem 26052 loglesqrt 26804 jensenlem1 27030 jensen 27032 amgm 27034 ushgredgedg 29246 ushgredgedgloop 29248 fisuppov1 32692 fmptunsnop 32709 mgcf1o 32993 gsumfs2d 33058 gsumzresunsn 33059 gsumpart 33060 gsumhashmul 33064 gsumle 33101 rprmdvdsprod 33562 coinflippv 34486 fdvposlt 34614 fdvposle 34616 logdivsqrle 34665 ftc1cnnclem 37698 dvasin 37711 dvacos 37712 dvreasin 37713 dvreacos 37714 areacirclem1 37715 dvrelog2 42065 dvrelog3 42066 aks6d1c2 42131 aks6d1c6lem3 42173 readvrec2 42391 readvrec 42392 resuppsinopn 42393 cantnf2 43338 limsupvaluz2 45753 supcnvlimsup 45755 itgperiod 45996 fourierdlem69 46190 fourierdlem73 46194 fourierdlem74 46195 fourierdlem75 46196 fourierdlem76 46197 fourierdlem81 46202 fourierdlem85 46206 fourierdlem88 46209 fourierdlem92 46213 fourierdlem97 46218 fourierdlem100 46221 fourierdlem101 46222 fourierdlem103 46224 fourierdlem104 46225 fourierdlem107 46228 fourierdlem111 46232 fourierdlem112 46233 fouriersw 46246 sge0tsms 46395 sge0resrnlem 46418 meadjiunlem 46480 omeunle 46531 isomenndlem 46545 |
| Copyright terms: Public domain | W3C validator |