Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem4 Structured version   Visualization version   GIF version

Theorem elrgspnlem4 33186
Description: Lemma for elrgspn 33187. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem4 (𝜑 → (𝑁𝐴) = 𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem4
Dummy variables 𝑒 𝑖 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . 4 𝐵 = (Base‘𝑅)
32a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . 3 (𝜑𝐴𝐵)
5 elrgspn.n . . . 4 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2736 . . 3 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspnval 20570 . 2 (𝜑 → (𝑁𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
9 sseq2 3985 . . . . 5 (𝑡 = 𝑆 → (𝐴𝑡𝐴𝑆))
10 elrgspn.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
11 elrgspn.x . . . . . 6 · = (.g𝑅)
12 elrgspn.f . . . . . 6 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
13 elrgspnlem1.1 . . . . . 6 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
142, 10, 11, 5, 12, 1, 4, 13elrgspnlem2 33184 . . . . 5 (𝜑𝑆 ∈ (SubRing‘𝑅))
152, 10, 11, 5, 12, 1, 4, 13elrgspnlem3 33185 . . . . 5 (𝜑𝐴𝑆)
169, 14, 15elrabd 3673 . . . 4 (𝜑𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
17 intss1 4939 . . . 4 (𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
1816, 17syl 17 . . 3 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
19 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
20 eqidd 2736 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) = (𝑔 supp 0))
21 oveq1 7410 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 supp 0) = (𝑔 supp 0))
2221eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 supp 0) = (𝑔 supp 0) ↔ (𝑔 supp 0) = (𝑔 supp 0)))
23 fveq1 6874 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓𝑤) = (𝑔𝑤))
2423oveq1d 7418 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
2524mpteq2dv 5215 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
2625oveq2d 7419 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2726eleq1d 2819 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
2822, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
29 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝑖 = ∅ → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ∅))
3029imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ∅ → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3130ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = ∅ → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
32 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝑖 = → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ))
3332imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3433ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝑖 = ( ∪ {𝑥}) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
3635imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ( ∪ {𝑥}) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3736ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = ( ∪ {𝑥}) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
38 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑔 supp 0) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = (𝑔 supp 0)))
3938imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = (𝑔 supp 0) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
4039ralbidv 3163 . . . . . . . . . . . . . 14 (𝑖 = (𝑔 supp 0) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
41 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (0g𝑅) = (0g𝑅)
421ringcmnd 20242 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ CMnd)
4342ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → 𝑅 ∈ CMnd)
442fvexi 6889 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
4645, 4ssexd 5294 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ V)
47 wrdexg 14540 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ V → Word 𝐴 ∈ V)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Word 𝐴 ∈ V)
4948ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → Word 𝐴 ∈ V)
50 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝜑)
5112reqabi 3439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝐹 ↔ (𝑓 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑓 finSupp 0))
5251simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝐹𝑓 ∈ (ℤ ↑m Word 𝐴))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 ∈ (ℤ ↑m Word 𝐴))
54 zex 12595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℤ ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℤ ∈ V)
5655, 48elmapd 8852 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑓 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑓:Word 𝐴⟶ℤ))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (ℤ ↑m Word 𝐴)) → 𝑓:Word 𝐴⟶ℤ)
5850, 53, 57syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓:Word 𝐴⟶ℤ)
5958ffnd 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 Fn Word 𝐴)
6059ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑓 Fn Word 𝐴)
6149adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ∈ V)
62 0zd 12598 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 0 ∈ ℤ)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ ∅))
6463eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐴)
6563eldifbd 3939 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ ∅)
66 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓 supp 0) = ∅)
6765, 66neleqtrrd 2857 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ (𝑓 supp 0))
6864, 67eldifd 3937 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ (𝑓 supp 0)))
6960, 61, 62, 68fvdifsupp 8168 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓𝑤) = 0)
7069oveq1d 7418 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
7110ringmgp 20197 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
721, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ Mnd)
7372ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑀 ∈ Mnd)
74 sswrd 14538 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
754, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7675ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ⊆ Word 𝐵)
7776, 64sseldd 3959 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐵)
7810, 2mgpbas 20103 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = (Base‘𝑀)
7978gsumwcl 18815 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8073, 77, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑀 Σg 𝑤) ∈ 𝐵)
812, 41, 11mulg0 19055 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8370, 82eqtrd 2770 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
84 0fi 9054 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ Fin
8584a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ∈ Fin)
861ringgrpd 20200 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ Grp)
8786ad6antr 736 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
8858ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑓:Word 𝐴⟶ℤ)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
9088, 89ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑓𝑤) ∈ ℤ)
9172ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
9275ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → Word 𝐴 ⊆ Word 𝐵)
9392, 89sseldd 3959 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
9491, 93, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
952, 11, 87, 90, 94mulgcld 19077 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
96 0ss 4375 . . . . . . . . . . . . . . . . . . . 20 ∅ ⊆ Word 𝐴
9796a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ⊆ Word 𝐴)
982, 41, 43, 49, 83, 85, 95, 97gsummptres2 32993 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
99 mpt0 6679 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅)
101100oveq2d 7419 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg ∅))
10241gsum0 18660 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg ∅) = (0g𝑅)
103102a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg ∅) = (0g𝑅))
10498, 101, 1033eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
105 subrgsubg 20535 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubGrp‘𝑅))
10641subg0cl 19115 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑡)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑡)
108107adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (0g𝑅) ∈ 𝑡)
109108ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (0g𝑅) ∈ 𝑡)
110104, 109eqeltrd 2834 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
111110ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
112111ralrimiva 3132 . . . . . . . . . . . . . 14 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
11342ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ CMnd)
11448ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
115 simp-5l 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝜑)
116 breq1 5122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = 𝑒 → (𝑓 finSupp 0 ↔ 𝑒 finSupp 0))
117116, 12elrab2 3674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒𝐹 ↔ (𝑒 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑒 finSupp 0))
118117simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒𝐹𝑒 ∈ (ℤ ↑m Word 𝐴))
11955, 48elmapd 8852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑒 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑒:Word 𝐴⟶ℤ))
120119biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℤ ↑m Word 𝐴)) → 𝑒:Word 𝐴⟶ℤ)
121118, 120sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
122115, 121sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
123122adantl3r 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
124123ffnd 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒 Fn Word 𝐴)
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑒 Fn Word 𝐴)
126114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ∈ V)
127 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 0 ∈ ℤ)
128 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
129125, 126, 127, 128fvdifsupp 8168 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑒𝑤) = 0)
130129oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
13172ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑀 ∈ Mnd)
13275ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ⊆ Word 𝐵)
133128eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐴)
134132, 133sseldd 3959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐵)
135131, 134, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑀 Σg 𝑤) ∈ 𝐵)
136135, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
137130, 136eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
138117simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒𝐹𝑒 finSupp 0)
139138ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 finSupp 0)
140139fsuppimpd 9379 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ∈ Fin)
14186ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
142123ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑒:Word 𝐴⟶ℤ)
143 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
144142, 143ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑒𝑤) ∈ ℤ)
14572ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
14675ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝐵)
147146sselda 3958 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
148145, 147, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1492, 11, 141, 144, 148mulgcld 19077 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
150 suppssdm 8174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 supp 0) ⊆ dom 𝑒
151123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
152150, 151fssdm 6724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ⊆ Word 𝐴)
1532, 41, 113, 114, 137, 140, 149, 152gsummptres2 32993 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
154153adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
155 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
156155mpteq1d 5210 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
157156oveq2d 7419 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
158 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑅) = (+g𝑅)
159 breq1 5122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
160159, 12elrab2 3674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
161160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔𝐹𝑔 finSupp 0)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔 finSupp 0)
163162fsuppimpd 9379 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) ∈ Fin)
164163ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ∈ Fin)
165 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ (𝑔 supp 0))
166164, 165ssfid 9271 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
16786ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑅 ∈ Grp)
168151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑒:Word 𝐴⟶ℤ)
169 suppssdm 8174 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔 supp 0) ⊆ dom 𝑔
170 simp-7l 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝜑)
171 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔𝐹)
172160simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
17355, 48elmapd 8852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
174173biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 ∈ (ℤ ↑m Word 𝐴)) → 𝑔:Word 𝐴⟶ℤ)
175172, 174sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
176170, 171, 175syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔:Word 𝐴⟶ℤ)
177169, 176fssdm 6724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ⊆ Word 𝐴)
178165, 177sstrd 3969 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ Word 𝐴)
179178sselda 3958 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑤 ∈ Word 𝐴)
180168, 179ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑒𝑤) ∈ ℤ)
181179, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑀 Σg 𝑤) ∈ 𝐵)
1822, 11, 167, 180, 181mulgcld 19077 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
183 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ ((𝑔 supp 0) ∖ ))
184183eldifbd 3939 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ¬ 𝑥)
185170, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
186183eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ (𝑔 supp 0))
187177, 186sseldd 3959 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
188151, 187ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
189170, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑀 ∈ Mnd)
190146, 187sseldd 3959 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐵)
19178gsumwcl 18815 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ Word 𝐵) → (𝑀 Σg 𝑥) ∈ 𝐵)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝐵)
1932, 11, 185, 188, 192mulgcld 19077 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝐵)
194 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑒𝑤) = (𝑒𝑥))
195 oveq2 7411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑥))
196194, 195oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑥) · (𝑀 Σg 𝑥)))
1972, 158, 113, 166, 182, 183, 184, 193, 196gsumunsn 19939 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
198197adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
199154, 157, 1983eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
200105ad8antlr 741 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubGrp‘𝑅))
201124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 Fn Word 𝐴)
202 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
203201, 187, 202fmptunsnop 32623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
204203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
205204fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
206 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))
207 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ 𝑦 = 𝑥) → 0 = 0)
208201ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑒 Fn Word 𝐴)
209114ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → Word 𝐴 ∈ V)
210 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ℤ)
211 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 = 𝑤)
212 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ (Word 𝐴))
213212eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ Word 𝐴)
214211, 213eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
215 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒 supp 0) = ( ∪ {𝑥}))
216212eldifbd 3939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑤)
217211, 216eqneltrd 2854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦)
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑥)
219218neqned 2939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦𝑥)
220 nelsn 4642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → ¬ 𝑦 ∈ {𝑥})
221219, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ {𝑥})
222 nelun 32440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒 supp 0) = ( ∪ {𝑥}) → (¬ 𝑦 ∈ (𝑒 supp 0) ↔ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})))
223222biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒 supp 0) = ( ∪ {𝑥}) ∧ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})) → ¬ 𝑦 ∈ (𝑒 supp 0))
224215, 217, 221, 223syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ (𝑒 supp 0))
225214, 224eldifd 3937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
226208, 209, 210, 225fvdifsupp 8168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) = 0)
227207, 226ifeqda 4537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = 0)
228 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ (Word 𝐴))
229228eldifad 3938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ Word 𝐴)
230 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 0 ∈ ℤ)
231206, 227, 229, 230fvmptd2 6993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = 0)
232205, 231eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = 0)
233232oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
234229, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑀 Σg 𝑤) ∈ 𝐵)
235234, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
236233, 235eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
237203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
238237fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
239 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
240151ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
241 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
242240, 241ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
243239, 242ifclda 4536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
244243fmpttd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
245244ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) ∈ ℤ)
246238, 245eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) ∈ ℤ)
2472, 11, 141, 246, 148mulgcld 19077 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
2482, 41, 113, 114, 236, 166, 247, 178gsummptres2 32993 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
249248adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
250203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
251250fveq1d 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
252 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
253 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑤)
254252, 253eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦)
255184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑥)
256 nelneq 2858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∧ ¬ 𝑥) → ¬ 𝑦 = 𝑥)
257254, 255, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑦 = 𝑥)
258257iffalsed 4511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑦))
259252fveq2d 6879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → (𝑒𝑦) = (𝑒𝑤))
260258, 259eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑤))
261206, 260, 179, 180fvmptd2 6993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (𝑒𝑤))
262251, 261eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = (𝑒𝑤))
263262oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑤) · (𝑀 Σg 𝑤)))
264263mpteq2dva 5214 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
265264adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
266265oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
267249, 266eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
268 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒𝐹)
269268resexd 6015 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∈ V)
270 snex 5406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {⟨𝑥, 0⟩} ∈ V
271270a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → {⟨𝑥, 0⟩} ∈ V)
272269, 271, 202suppun2 32607 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)))
273114, 202, 201fdifsupp 32608 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = ((𝑒 supp 0) ∖ {𝑥}))
274 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
275274difeq1d 4100 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 supp 0) ∖ {𝑥}) = (( ∪ {𝑥}) ∖ {𝑥}))
276 disjsn 4687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ ↔ ¬ 𝑥)
277 undif5 4460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ → (( ∪ {𝑥}) ∖ {𝑥}) = )
278276, 277sylbir 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 → (( ∪ {𝑥}) ∖ {𝑥}) = )
279184, 278syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (( ∪ {𝑥}) ∖ {𝑥}) = )
280273, 275, 2793eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = )
281 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑥 ∈ V
282 c0ex 11227 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
283281, 282xpsn 7130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ({𝑥} × {0}) = {⟨𝑥, 0⟩}
284283oveq1i 7413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ({⟨𝑥, 0⟩} supp 0)
285 fczsupp0 8190 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ∅
286284, 285eqtr3i 2760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({⟨𝑥, 0⟩} supp 0) = ∅
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ({⟨𝑥, 0⟩} supp 0) = ∅)
288280, 287uneq12d 4144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)) = ( ∪ ∅))
289 un0 4369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∪ ∅) =
290289a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ( ∪ ∅) = )
291272, 288, 2903eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
292291adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
293 oveq1 7410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0))
294293eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓 supp 0) = ↔ (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = ))
295 fveq1 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
296295oveq1d 7418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))
297296mpteq2dv 5215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))))
298297oveq2d 7419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
299298eleq1d 2819 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
300294, 299imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
301 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
302 breq1 5122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 finSupp 0 ↔ ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0))
30354a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ℤ ∈ V)
304114adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
305203adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
306 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
307 simp-10l 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝜑)
308 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒𝐹)
309307, 308, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
310 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
311309, 310ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
312306, 311ifclda 4536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
313312fmpttd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
314305, 313feq1dd 6690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}):Word 𝐴⟶ℤ)
315303, 304, 314elmapdd 8853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ (ℤ ↑m Word 𝐴))
316 0zd 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
317314ffund 6709 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Fun ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
318166adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
319292, 318eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) ∈ Fin)
320315, 316, 317, 319isfsuppd 9376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0)
321302, 315, 320elrabd 3673 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
322321, 12eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ 𝐹)
323300, 301, 322rspcdva 3602 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
324292, 323mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
325267, 324eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
32686ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
32710subrgsubm 20543 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubMnd‘𝑀))
328327ad8antlr 741 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubMnd‘𝑀))
329 sswrd 14538 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑡 → Word 𝐴 ⊆ Word 𝑡)
330329ad7antlr 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝑡)
331187adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
332330, 331sseldd 3959 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝑡)
333 gsumwsubmcl 18813 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ (SubMnd‘𝑀) ∧ 𝑥 ∈ Word 𝑡) → (𝑀 Σg 𝑥) ∈ 𝑡)
334328, 332, 333syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝑡)
335123ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
336335, 331ffvelcdmd 7074 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
3372, 11, 326, 334, 200, 336subgmulgcld 32984 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝑡)
338158, 200, 325, 337subgcld 32982 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))) ∈ 𝑡)
339199, 338eqeltrd 2834 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
340339ex 412 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) → ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
341340ralrimiva 3132 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
342341ex 412 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
343342anasss 466 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
344 oveq1 7410 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑒 supp 0) = (𝑓 supp 0))
345344eqeq1d 2737 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑒 supp 0) = ( ∪ {𝑥}) ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
346 fveq1 6874 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑓 → (𝑒𝑤) = (𝑓𝑤))
347346oveq1d 7418 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑓 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑓𝑤) · (𝑀 Σg 𝑤)))
348347mpteq2dv 5215 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑓 → (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))))
349348oveq2d 7419 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
350349eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
351345, 350imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑓 → (((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
352351cbvralvw 3220 . . . . . . . . . . . . . . 15 (∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
353343, 352imbitrdi 251 . . . . . . . . . . . . . 14 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35431, 34, 37, 40, 112, 353, 163findcard2d 9178 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
355 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔𝐹)
35628, 354, 355rspcdva 3602 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
35720, 356mpd 15 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
358357ad4ant13 751 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
35919, 358eqeltrd 2834 . . . . . . . . 9 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠𝑡)
360 eqid 2735 . . . . . . . . . 10 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
36113eleq2i 2826 . . . . . . . . . . . 12 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
362361biimpi 216 . . . . . . . . . . 11 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
363362adantl 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
364360, 363elrnmpt2d 5946 . . . . . . . . 9 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → ∃𝑔𝐹 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
365359, 364r19.29a 3148 . . . . . . . 8 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠𝑡)
366365ex 412 . . . . . . 7 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → (𝑠𝑆𝑠𝑡))
367366ssrdv 3964 . . . . . 6 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → 𝑆𝑡)
368367ex 412 . . . . 5 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (𝐴𝑡𝑆𝑡))
369368ralrimiva 3132 . . . 4 (𝜑 → ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
370 ssintrab 4947 . . . 4 (𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ↔ ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
371369, 370sylibr 234 . . 3 (𝜑𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
37218, 371eqssd 3976 . 2 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} = 𝑆)
3738, 372eqtrd 2770 1 (𝜑 → (𝑁𝐴) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  ifcif 4500  {csn 4601  cop 4607   cint 4922   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  cres 5656   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157  m cmap 8838  Fincfn 8957   finSupp cfsupp 9371  0cc0 11127  cz 12586  Word cword 14529  Basecbs 17226  +gcplusg 17269  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  SubMndcsubmnd 18758  Grpcgrp 18914  .gcmg 19048  SubGrpcsubg 19101  CMndccmn 19759  mulGrpcmgp 20098  Ringcrg 20191  SubRingcsubrg 20527  RingSpancrgspn 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-substr 14657  df-pfx 14687  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-0g 17453  df-gsum 17454  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-oppr 20295  df-subrng 20504  df-subrg 20528  df-rgspn 20569  df-cnfld 21314  df-zring 21406
This theorem is referenced by:  elrgspn  33187
  Copyright terms: Public domain W3C validator