Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem4 Structured version   Visualization version   GIF version

Theorem elrgspnlem4 33203
Description: Lemma for elrgspn 33204. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem4 (𝜑 → (𝑁𝐴) = 𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem4
Dummy variables 𝑒 𝑖 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . 4 𝐵 = (Base‘𝑅)
32a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . 3 (𝜑𝐴𝐵)
5 elrgspn.n . . . 4 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2731 . . 3 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspnval 20528 . 2 (𝜑 → (𝑁𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
9 sseq2 3976 . . . . 5 (𝑡 = 𝑆 → (𝐴𝑡𝐴𝑆))
10 elrgspn.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
11 elrgspn.x . . . . . 6 · = (.g𝑅)
12 elrgspn.f . . . . . 6 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
13 elrgspnlem1.1 . . . . . 6 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
142, 10, 11, 5, 12, 1, 4, 13elrgspnlem2 33201 . . . . 5 (𝜑𝑆 ∈ (SubRing‘𝑅))
152, 10, 11, 5, 12, 1, 4, 13elrgspnlem3 33202 . . . . 5 (𝜑𝐴𝑆)
169, 14, 15elrabd 3664 . . . 4 (𝜑𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
17 intss1 4930 . . . 4 (𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
1816, 17syl 17 . . 3 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
19 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
20 eqidd 2731 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) = (𝑔 supp 0))
21 oveq1 7397 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 supp 0) = (𝑔 supp 0))
2221eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 supp 0) = (𝑔 supp 0) ↔ (𝑔 supp 0) = (𝑔 supp 0)))
23 fveq1 6860 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓𝑤) = (𝑔𝑤))
2423oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
2524mpteq2dv 5204 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
2625oveq2d 7406 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2726eleq1d 2814 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
2822, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
29 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑖 = ∅ → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ∅))
3029imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ∅ → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3130ralbidv 3157 . . . . . . . . . . . . . 14 (𝑖 = ∅ → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
32 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑖 = → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ))
3332imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3433ralbidv 3157 . . . . . . . . . . . . . 14 (𝑖 = → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑖 = ( ∪ {𝑥}) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
3635imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ( ∪ {𝑥}) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3736ralbidv 3157 . . . . . . . . . . . . . 14 (𝑖 = ( ∪ {𝑥}) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
38 eqeq2 2742 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑔 supp 0) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = (𝑔 supp 0)))
3938imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = (𝑔 supp 0) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
4039ralbidv 3157 . . . . . . . . . . . . . 14 (𝑖 = (𝑔 supp 0) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
41 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (0g𝑅) = (0g𝑅)
421ringcmnd 20200 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ CMnd)
4342ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → 𝑅 ∈ CMnd)
442fvexi 6875 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
4645, 4ssexd 5282 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ V)
47 wrdexg 14496 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ V → Word 𝐴 ∈ V)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Word 𝐴 ∈ V)
4948ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → Word 𝐴 ∈ V)
50 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝜑)
5112reqabi 3432 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝐹 ↔ (𝑓 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑓 finSupp 0))
5251simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝐹𝑓 ∈ (ℤ ↑m Word 𝐴))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 ∈ (ℤ ↑m Word 𝐴))
54 zex 12545 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℤ ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℤ ∈ V)
5655, 48elmapd 8816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑓 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑓:Word 𝐴⟶ℤ))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (ℤ ↑m Word 𝐴)) → 𝑓:Word 𝐴⟶ℤ)
5850, 53, 57syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓:Word 𝐴⟶ℤ)
5958ffnd 6692 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 Fn Word 𝐴)
6059ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑓 Fn Word 𝐴)
6149adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ∈ V)
62 0zd 12548 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 0 ∈ ℤ)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ ∅))
6463eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐴)
6563eldifbd 3930 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ ∅)
66 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓 supp 0) = ∅)
6765, 66neleqtrrd 2852 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ (𝑓 supp 0))
6864, 67eldifd 3928 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ (𝑓 supp 0)))
6960, 61, 62, 68fvdifsupp 8153 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓𝑤) = 0)
7069oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
7110ringmgp 20155 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
721, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ Mnd)
7372ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑀 ∈ Mnd)
74 sswrd 14494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
754, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7675ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ⊆ Word 𝐵)
7776, 64sseldd 3950 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐵)
7810, 2mgpbas 20061 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = (Base‘𝑀)
7978gsumwcl 18773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8073, 77, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑀 Σg 𝑤) ∈ 𝐵)
812, 41, 11mulg0 19013 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8370, 82eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
84 0fi 9016 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ Fin
8584a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ∈ Fin)
861ringgrpd 20158 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ Grp)
8786ad6antr 736 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
8858ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑓:Word 𝐴⟶ℤ)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
9088, 89ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑓𝑤) ∈ ℤ)
9172ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
9275ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → Word 𝐴 ⊆ Word 𝐵)
9392, 89sseldd 3950 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
9491, 93, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
952, 11, 87, 90, 94mulgcld 19035 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
96 0ss 4366 . . . . . . . . . . . . . . . . . . . 20 ∅ ⊆ Word 𝐴
9796a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ⊆ Word 𝐴)
982, 41, 43, 49, 83, 85, 95, 97gsummptres2 33000 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
99 mpt0 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅)
101100oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg ∅))
10241gsum0 18618 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg ∅) = (0g𝑅)
103102a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg ∅) = (0g𝑅))
10498, 101, 1033eqtrd 2769 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
105 subrgsubg 20493 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubGrp‘𝑅))
10641subg0cl 19073 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑡)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑡)
108107adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (0g𝑅) ∈ 𝑡)
109108ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (0g𝑅) ∈ 𝑡)
110104, 109eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
111110ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
112111ralrimiva 3126 . . . . . . . . . . . . . 14 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
11342ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ CMnd)
11448ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
115 simp-5l 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝜑)
116 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = 𝑒 → (𝑓 finSupp 0 ↔ 𝑒 finSupp 0))
117116, 12elrab2 3665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒𝐹 ↔ (𝑒 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑒 finSupp 0))
118117simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒𝐹𝑒 ∈ (ℤ ↑m Word 𝐴))
11955, 48elmapd 8816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑒 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑒:Word 𝐴⟶ℤ))
120119biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℤ ↑m Word 𝐴)) → 𝑒:Word 𝐴⟶ℤ)
121118, 120sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
122115, 121sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
123122adantl3r 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
124123ffnd 6692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒 Fn Word 𝐴)
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑒 Fn Word 𝐴)
126114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ∈ V)
127 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 0 ∈ ℤ)
128 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
129125, 126, 127, 128fvdifsupp 8153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑒𝑤) = 0)
130129oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
13172ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑀 ∈ Mnd)
13275ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ⊆ Word 𝐵)
133128eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐴)
134132, 133sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐵)
135131, 134, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑀 Σg 𝑤) ∈ 𝐵)
136135, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
137130, 136eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
138117simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒𝐹𝑒 finSupp 0)
139138ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 finSupp 0)
140139fsuppimpd 9327 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ∈ Fin)
14186ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
142123ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑒:Word 𝐴⟶ℤ)
143 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
144142, 143ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑒𝑤) ∈ ℤ)
14572ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
14675ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝐵)
147146sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
148145, 147, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1492, 11, 141, 144, 148mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
150 suppssdm 8159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 supp 0) ⊆ dom 𝑒
151123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
152150, 151fssdm 6710 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ⊆ Word 𝐴)
1532, 41, 113, 114, 137, 140, 149, 152gsummptres2 33000 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
154153adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
155 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
156155mpteq1d 5200 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
157156oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
158 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑅) = (+g𝑅)
159 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
160159, 12elrab2 3665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
161160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔𝐹𝑔 finSupp 0)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔 finSupp 0)
163162fsuppimpd 9327 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) ∈ Fin)
164163ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ∈ Fin)
165 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ (𝑔 supp 0))
166164, 165ssfid 9219 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
16786ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑅 ∈ Grp)
168151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑒:Word 𝐴⟶ℤ)
169 suppssdm 8159 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔 supp 0) ⊆ dom 𝑔
170 simp-7l 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝜑)
171 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔𝐹)
172160simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
17355, 48elmapd 8816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
174173biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 ∈ (ℤ ↑m Word 𝐴)) → 𝑔:Word 𝐴⟶ℤ)
175172, 174sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
176170, 171, 175syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔:Word 𝐴⟶ℤ)
177169, 176fssdm 6710 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ⊆ Word 𝐴)
178165, 177sstrd 3960 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ Word 𝐴)
179178sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑤 ∈ Word 𝐴)
180168, 179ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑒𝑤) ∈ ℤ)
181179, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑀 Σg 𝑤) ∈ 𝐵)
1822, 11, 167, 180, 181mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
183 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ ((𝑔 supp 0) ∖ ))
184183eldifbd 3930 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ¬ 𝑥)
185170, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
186183eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ (𝑔 supp 0))
187177, 186sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
188151, 187ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
189170, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑀 ∈ Mnd)
190146, 187sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐵)
19178gsumwcl 18773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ Word 𝐵) → (𝑀 Σg 𝑥) ∈ 𝐵)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝐵)
1932, 11, 185, 188, 192mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝐵)
194 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑒𝑤) = (𝑒𝑥))
195 oveq2 7398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑥))
196194, 195oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑥) · (𝑀 Σg 𝑥)))
1972, 158, 113, 166, 182, 183, 184, 193, 196gsumunsn 19897 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
198197adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
199154, 157, 1983eqtrd 2769 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
200105ad8antlr 741 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubGrp‘𝑅))
201124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 Fn Word 𝐴)
202 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
203201, 187, 202fmptunsnop 32630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
204203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
205204fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
206 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))
207 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ 𝑦 = 𝑥) → 0 = 0)
208201ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑒 Fn Word 𝐴)
209114ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → Word 𝐴 ∈ V)
210 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ℤ)
211 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 = 𝑤)
212 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ (Word 𝐴))
213212eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ Word 𝐴)
214211, 213eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
215 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒 supp 0) = ( ∪ {𝑥}))
216212eldifbd 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑤)
217211, 216eqneltrd 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦)
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑥)
219218neqned 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦𝑥)
220 nelsn 4633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → ¬ 𝑦 ∈ {𝑥})
221219, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ {𝑥})
222 nelun 32449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒 supp 0) = ( ∪ {𝑥}) → (¬ 𝑦 ∈ (𝑒 supp 0) ↔ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})))
223222biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒 supp 0) = ( ∪ {𝑥}) ∧ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})) → ¬ 𝑦 ∈ (𝑒 supp 0))
224215, 217, 221, 223syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ (𝑒 supp 0))
225214, 224eldifd 3928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
226208, 209, 210, 225fvdifsupp 8153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) = 0)
227207, 226ifeqda 4528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = 0)
228 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ (Word 𝐴))
229228eldifad 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ Word 𝐴)
230 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 0 ∈ ℤ)
231206, 227, 229, 230fvmptd2 6979 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = 0)
232205, 231eqtr3d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = 0)
233232oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
234229, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑀 Σg 𝑤) ∈ 𝐵)
235234, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
236233, 235eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
237203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
238237fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
239 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
240151ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
241 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
242240, 241ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
243239, 242ifclda 4527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
244243fmpttd 7090 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
245244ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) ∈ ℤ)
246238, 245eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) ∈ ℤ)
2472, 11, 141, 246, 148mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
2482, 41, 113, 114, 236, 166, 247, 178gsummptres2 33000 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
249248adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
250203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
251250fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
252 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
253 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑤)
254252, 253eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦)
255184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑥)
256 nelneq 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∧ ¬ 𝑥) → ¬ 𝑦 = 𝑥)
257254, 255, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑦 = 𝑥)
258257iffalsed 4502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑦))
259252fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → (𝑒𝑦) = (𝑒𝑤))
260258, 259eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑤))
261206, 260, 179, 180fvmptd2 6979 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (𝑒𝑤))
262251, 261eqtr3d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = (𝑒𝑤))
263262oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑤) · (𝑀 Σg 𝑤)))
264263mpteq2dva 5203 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
265264adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
266265oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
267249, 266eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
268 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒𝐹)
269268resexd 6002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∈ V)
270 snex 5394 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {⟨𝑥, 0⟩} ∈ V
271270a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → {⟨𝑥, 0⟩} ∈ V)
272269, 271, 202suppun2 32614 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)))
273114, 202, 201fdifsupp 32615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = ((𝑒 supp 0) ∖ {𝑥}))
274 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
275274difeq1d 4091 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 supp 0) ∖ {𝑥}) = (( ∪ {𝑥}) ∖ {𝑥}))
276 disjsn 4678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ ↔ ¬ 𝑥)
277 undif5 4451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ → (( ∪ {𝑥}) ∖ {𝑥}) = )
278276, 277sylbir 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 → (( ∪ {𝑥}) ∖ {𝑥}) = )
279184, 278syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (( ∪ {𝑥}) ∖ {𝑥}) = )
280273, 275, 2793eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = )
281 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑥 ∈ V
282 c0ex 11175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
283281, 282xpsn 7116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ({𝑥} × {0}) = {⟨𝑥, 0⟩}
284283oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ({⟨𝑥, 0⟩} supp 0)
285 fczsupp0 8175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ∅
286284, 285eqtr3i 2755 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({⟨𝑥, 0⟩} supp 0) = ∅
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ({⟨𝑥, 0⟩} supp 0) = ∅)
288280, 287uneq12d 4135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)) = ( ∪ ∅))
289 un0 4360 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∪ ∅) =
290289a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ( ∪ ∅) = )
291272, 288, 2903eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
292291adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
293 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0))
294293eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓 supp 0) = ↔ (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = ))
295 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
296295oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))
297296mpteq2dv 5204 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))))
298297oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
299298eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
300294, 299imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
301 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
302 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 finSupp 0 ↔ ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0))
30354a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ℤ ∈ V)
304114adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
305203adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
306 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
307 simp-10l 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝜑)
308 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒𝐹)
309307, 308, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
310 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
311309, 310ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
312306, 311ifclda 4527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
313312fmpttd 7090 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
314305, 313feq1dd 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}):Word 𝐴⟶ℤ)
315303, 304, 314elmapdd 8817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ (ℤ ↑m Word 𝐴))
316 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
317314ffund 6695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Fun ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
318166adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
319292, 318eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) ∈ Fin)
320315, 316, 317, 319isfsuppd 9324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0)
321302, 315, 320elrabd 3664 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
322321, 12eleqtrrdi 2840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ 𝐹)
323300, 301, 322rspcdva 3592 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
324292, 323mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
325267, 324eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
32686ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
32710subrgsubm 20501 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubMnd‘𝑀))
328327ad8antlr 741 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubMnd‘𝑀))
329 sswrd 14494 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑡 → Word 𝐴 ⊆ Word 𝑡)
330329ad7antlr 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝑡)
331187adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
332330, 331sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝑡)
333 gsumwsubmcl 18771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ (SubMnd‘𝑀) ∧ 𝑥 ∈ Word 𝑡) → (𝑀 Σg 𝑥) ∈ 𝑡)
334328, 332, 333syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝑡)
335123ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
336335, 331ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
3372, 11, 326, 334, 200, 336subgmulgcld 32991 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝑡)
338158, 200, 325, 337subgcld 32989 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))) ∈ 𝑡)
339199, 338eqeltrd 2829 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
340339ex 412 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) → ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
341340ralrimiva 3126 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
342341ex 412 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
343342anasss 466 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
344 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑒 supp 0) = (𝑓 supp 0))
345344eqeq1d 2732 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑒 supp 0) = ( ∪ {𝑥}) ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
346 fveq1 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑓 → (𝑒𝑤) = (𝑓𝑤))
347346oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑓 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑓𝑤) · (𝑀 Σg 𝑤)))
348347mpteq2dv 5204 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑓 → (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))))
349348oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
350349eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
351345, 350imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑓 → (((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
352351cbvralvw 3216 . . . . . . . . . . . . . . 15 (∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
353343, 352imbitrdi 251 . . . . . . . . . . . . . 14 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35431, 34, 37, 40, 112, 353, 163findcard2d 9136 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
355 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔𝐹)
35628, 354, 355rspcdva 3592 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
35720, 356mpd 15 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
358357ad4ant13 751 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
35919, 358eqeltrd 2829 . . . . . . . . 9 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠𝑡)
360 eqid 2730 . . . . . . . . . 10 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
36113eleq2i 2821 . . . . . . . . . . . 12 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
362361biimpi 216 . . . . . . . . . . 11 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
363362adantl 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
364360, 363elrnmpt2d 5933 . . . . . . . . 9 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → ∃𝑔𝐹 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
365359, 364r19.29a 3142 . . . . . . . 8 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠𝑡)
366365ex 412 . . . . . . 7 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → (𝑠𝑆𝑠𝑡))
367366ssrdv 3955 . . . . . 6 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → 𝑆𝑡)
368367ex 412 . . . . 5 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (𝐴𝑡𝑆𝑡))
369368ralrimiva 3126 . . . 4 (𝜑 → ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
370 ssintrab 4938 . . . 4 (𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ↔ ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
371369, 370sylibr 234 . . 3 (𝜑𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
37218, 371eqssd 3967 . 2 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} = 𝑆)
3738, 372eqtrd 2765 1 (𝜑 → (𝑁𝐴) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592  cop 4598   cint 4913   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  cz 12536  Word cword 14485  Basecbs 17186  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  SubMndcsubmnd 18716  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  SubRingcsubrg 20485  RingSpancrgspn 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-subrng 20462  df-subrg 20486  df-rgspn 20527  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  elrgspn  33204
  Copyright terms: Public domain W3C validator