Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnlem4 Structured version   Visualization version   GIF version

Theorem elrgspnlem4 33212
Description: Lemma for elrgspn 33213. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
elrgspn.b 𝐵 = (Base‘𝑅)
elrgspn.m 𝑀 = (mulGrp‘𝑅)
elrgspn.x · = (.g𝑅)
elrgspn.n 𝑁 = (RingSpan‘𝑅)
elrgspn.f 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
elrgspn.r (𝜑𝑅 ∈ Ring)
elrgspn.a (𝜑𝐴𝐵)
elrgspnlem1.1 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
Assertion
Ref Expression
elrgspnlem4 (𝜑 → (𝑁𝐴) = 𝑆)
Distinct variable groups:   · ,𝑓,𝑔,𝑤   𝐴,𝑓,𝑔,𝑤   𝐵,𝑓,𝑔,𝑤   𝑓,𝐹,𝑔,𝑤   𝑓,𝑀,𝑔,𝑤   𝑅,𝑓,𝑔,𝑤   𝑆,𝑔,𝑤   𝜑,𝑓,𝑔,𝑤
Allowed substitution hints:   𝑆(𝑓)   𝑁(𝑤,𝑓,𝑔)

Proof of Theorem elrgspnlem4
Dummy variables 𝑒 𝑖 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrgspn.r . . 3 (𝜑𝑅 ∈ Ring)
2 elrgspn.b . . . 4 𝐵 = (Base‘𝑅)
32a1i 11 . . 3 (𝜑𝐵 = (Base‘𝑅))
4 elrgspn.a . . 3 (𝜑𝐴𝐵)
5 elrgspn.n . . . 4 𝑁 = (RingSpan‘𝑅)
65a1i 11 . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
7 eqidd 2732 . . 3 (𝜑 → (𝑁𝐴) = (𝑁𝐴))
81, 3, 4, 6, 7rgspnval 20527 . 2 (𝜑 → (𝑁𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
9 sseq2 3956 . . . . 5 (𝑡 = 𝑆 → (𝐴𝑡𝐴𝑆))
10 elrgspn.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
11 elrgspn.x . . . . . 6 · = (.g𝑅)
12 elrgspn.f . . . . . 6 𝐹 = {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0}
13 elrgspnlem1.1 . . . . . 6 𝑆 = ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
142, 10, 11, 5, 12, 1, 4, 13elrgspnlem2 33210 . . . . 5 (𝜑𝑆 ∈ (SubRing‘𝑅))
152, 10, 11, 5, 12, 1, 4, 13elrgspnlem3 33211 . . . . 5 (𝜑𝐴𝑆)
169, 14, 15elrabd 3644 . . . 4 (𝜑𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
17 intss1 4911 . . . 4 (𝑆 ∈ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
1816, 17syl 17 . . 3 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ⊆ 𝑆)
19 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
20 eqidd 2732 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) = (𝑔 supp 0))
21 oveq1 7353 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 supp 0) = (𝑔 supp 0))
2221eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 supp 0) = (𝑔 supp 0) ↔ (𝑔 supp 0) = (𝑔 supp 0)))
23 fveq1 6821 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓𝑤) = (𝑔𝑤))
2423oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((𝑔𝑤) · (𝑀 Σg 𝑤)))
2524mpteq2dv 5183 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))
2625oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
2726eleq1d 2816 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
2822, 27imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
29 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑖 = ∅ → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ∅))
3029imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ∅ → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3130ralbidv 3155 . . . . . . . . . . . . . 14 (𝑖 = ∅ → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
32 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑖 = → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ))
3332imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3433ralbidv 3155 . . . . . . . . . . . . . 14 (𝑖 = → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑖 = ( ∪ {𝑥}) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
3635imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = ( ∪ {𝑥}) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
3736ralbidv 3155 . . . . . . . . . . . . . 14 (𝑖 = ( ∪ {𝑥}) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
38 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑔 supp 0) → ((𝑓 supp 0) = 𝑖 ↔ (𝑓 supp 0) = (𝑔 supp 0)))
3938imbi1d 341 . . . . . . . . . . . . . . 15 (𝑖 = (𝑔 supp 0) → (((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
4039ralbidv 3155 . . . . . . . . . . . . . 14 (𝑖 = (𝑔 supp 0) → (∀𝑓𝐹 ((𝑓 supp 0) = 𝑖 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
41 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (0g𝑅) = (0g𝑅)
421ringcmnd 20202 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ CMnd)
4342ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → 𝑅 ∈ CMnd)
442fvexi 6836 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 ∈ V
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
4645, 4ssexd 5260 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ V)
47 wrdexg 14431 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ V → Word 𝐴 ∈ V)
4846, 47syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Word 𝐴 ∈ V)
4948ad5antr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → Word 𝐴 ∈ V)
50 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝜑)
5112reqabi 3418 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝐹 ↔ (𝑓 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑓 finSupp 0))
5251simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓𝐹𝑓 ∈ (ℤ ↑m Word 𝐴))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 ∈ (ℤ ↑m Word 𝐴))
54 zex 12477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℤ ∈ V
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ℤ ∈ V)
5655, 48elmapd 8764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑓 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑓:Word 𝐴⟶ℤ))
5756biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑓 ∈ (ℤ ↑m Word 𝐴)) → 𝑓:Word 𝐴⟶ℤ)
5850, 53, 57syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓:Word 𝐴⟶ℤ)
5958ffnd 6652 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → 𝑓 Fn Word 𝐴)
6059ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑓 Fn Word 𝐴)
6149adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ∈ V)
62 0zd 12480 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 0 ∈ ℤ)
63 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ ∅))
6463eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐴)
6563eldifbd 3910 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ ∅)
66 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓 supp 0) = ∅)
6765, 66neleqtrrd 2854 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ¬ 𝑤 ∈ (𝑓 supp 0))
6864, 67eldifd 3908 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ (Word 𝐴 ∖ (𝑓 supp 0)))
6960, 61, 62, 68fvdifsupp 8101 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑓𝑤) = 0)
7069oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
7110ringmgp 20157 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
721, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ Mnd)
7372ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑀 ∈ Mnd)
74 sswrd 14429 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝐵 → Word 𝐴 ⊆ Word 𝐵)
754, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → Word 𝐴 ⊆ Word 𝐵)
7675ad6antr 736 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → Word 𝐴 ⊆ Word 𝐵)
7776, 64sseldd 3930 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → 𝑤 ∈ Word 𝐵)
7810, 2mgpbas 20063 . . . . . . . . . . . . . . . . . . . . . . 23 𝐵 = (Base‘𝑀)
7978gsumwcl 18747 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → (𝑀 Σg 𝑤) ∈ 𝐵)
8073, 77, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (𝑀 Σg 𝑤) ∈ 𝐵)
812, 41, 11mulg0 18987 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 Σg 𝑤) ∈ 𝐵 → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
8370, 82eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ (Word 𝐴 ∖ ∅)) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
84 0fi 8964 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ Fin
8584a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ∈ Fin)
861ringgrpd 20160 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ Grp)
8786ad6antr 736 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
8858ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑓:Word 𝐴⟶ℤ)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
9088, 89ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑓𝑤) ∈ ℤ)
9172ad6antr 736 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
9275ad6antr 736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → Word 𝐴 ⊆ Word 𝐵)
9392, 89sseldd 3930 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
9491, 93, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
952, 11, 87, 90, 94mulgcld 19009 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) ∧ 𝑤 ∈ Word 𝐴) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
96 0ss 4347 . . . . . . . . . . . . . . . . . . . 20 ∅ ⊆ Word 𝐴
9796a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → ∅ ⊆ Word 𝐴)
982, 41, 43, 49, 83, 85, 95, 97gsummptres2 33033 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
99 mpt0 6623 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = ∅)
101100oveq2d 7362 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ ∅ ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg ∅))
10241gsum0 18592 . . . . . . . . . . . . . . . . . . 19 (𝑅 Σg ∅) = (0g𝑅)
103102a1i 11 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg ∅) = (0g𝑅))
10498, 101, 1033eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (0g𝑅))
105 subrgsubg 20492 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubGrp‘𝑅))
10641subg0cl 19047 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑡)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (SubRing‘𝑅) → (0g𝑅) ∈ 𝑡)
108107adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (0g𝑅) ∈ 𝑡)
109108ad4antr 732 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (0g𝑅) ∈ 𝑡)
110104, 109eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) ∧ (𝑓 supp 0) = ∅) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
111110ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ 𝑓𝐹) → ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
112111ralrimiva 3124 . . . . . . . . . . . . . 14 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = ∅ → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
11342ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ CMnd)
11448ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
115 simp-5l 784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝜑)
116 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = 𝑒 → (𝑓 finSupp 0 ↔ 𝑒 finSupp 0))
117116, 12elrab2 3645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑒𝐹 ↔ (𝑒 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑒 finSupp 0))
118117simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑒𝐹𝑒 ∈ (ℤ ↑m Word 𝐴))
11955, 48elmapd 8764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝑒 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑒:Word 𝐴⟶ℤ))
120119biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑒 ∈ (ℤ ↑m Word 𝐴)) → 𝑒:Word 𝐴⟶ℤ)
121118, 120sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
122115, 121sylancom 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
123122adantl3r 750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒:Word 𝐴⟶ℤ)
124123ffnd 6652 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) → 𝑒 Fn Word 𝐴)
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑒 Fn Word 𝐴)
126114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ∈ V)
127 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 0 ∈ ℤ)
128 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
129125, 126, 127, 128fvdifsupp 8101 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑒𝑤) = 0)
130129oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
13172ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑀 ∈ Mnd)
13275ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → Word 𝐴 ⊆ Word 𝐵)
133128eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐴)
134132, 133sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → 𝑤 ∈ Word 𝐵)
135131, 134, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (𝑀 Σg 𝑤) ∈ 𝐵)
136135, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
137130, 136eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴 ∖ (𝑒 supp 0))) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
138117simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑒𝐹𝑒 finSupp 0)
139138ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 finSupp 0)
140139fsuppimpd 9253 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ∈ Fin)
14186ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑅 ∈ Grp)
142123ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑒:Word 𝐴⟶ℤ)
143 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐴)
144142, 143ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑒𝑤) ∈ ℤ)
14572ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑀 ∈ Mnd)
14675ad7antr 738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝐵)
147146sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → 𝑤 ∈ Word 𝐵)
148145, 147, 79syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑀 Σg 𝑤) ∈ 𝐵)
1492, 11, 141, 144, 148mulgcld 19009 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
150 suppssdm 8107 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 supp 0) ⊆ dom 𝑒
151123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
152150, 151fssdm 6670 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) ⊆ Word 𝐴)
1532, 41, 113, 114, 137, 140, 149, 152gsummptres2 33033 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
154153adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
155 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
156155mpteq1d 5179 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
157156oveq2d 7362 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ (𝑒 supp 0) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
158 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑅) = (+g𝑅)
159 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = 𝑔 → (𝑓 finSupp 0 ↔ 𝑔 finSupp 0))
160159, 12elrab2 3645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔𝐹 ↔ (𝑔 ∈ (ℤ ↑m Word 𝐴) ∧ 𝑔 finSupp 0))
161160simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔𝐹𝑔 finSupp 0)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔 finSupp 0)
163162fsuppimpd 9253 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑔 supp 0) ∈ Fin)
164163ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ∈ Fin)
165 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ (𝑔 supp 0))
166164, 165ssfid 9153 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
16786ad8antr 740 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑅 ∈ Grp)
168151adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑒:Word 𝐴⟶ℤ)
169 suppssdm 8107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔 supp 0) ⊆ dom 𝑔
170 simp-7l 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝜑)
171 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔𝐹)
172160simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑔𝐹𝑔 ∈ (ℤ ↑m Word 𝐴))
17355, 48elmapd 8764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑔 ∈ (ℤ ↑m Word 𝐴) ↔ 𝑔:Word 𝐴⟶ℤ))
174173biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 ∈ (ℤ ↑m Word 𝐴)) → 𝑔:Word 𝐴⟶ℤ)
175172, 174sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔𝐹) → 𝑔:Word 𝐴⟶ℤ)
176170, 171, 175syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑔:Word 𝐴⟶ℤ)
177169, 176fssdm 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑔 supp 0) ⊆ Word 𝐴)
178165, 177sstrd 3940 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ⊆ Word 𝐴)
179178sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → 𝑤 ∈ Word 𝐴)
180168, 179ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑒𝑤) ∈ ℤ)
181179, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑀 Σg 𝑤) ∈ 𝐵)
1822, 11, 167, 180, 181mulgcld 19009 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑒𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
183 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ ((𝑔 supp 0) ∖ ))
184183eldifbd 3910 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ¬ 𝑥)
185170, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
186183eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ (𝑔 supp 0))
187177, 186sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
188151, 187ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
189170, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑀 ∈ Mnd)
190146, 187sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐵)
19178gsumwcl 18747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ Word 𝐵) → (𝑀 Σg 𝑥) ∈ 𝐵)
192189, 190, 191syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝐵)
1932, 11, 185, 188, 192mulgcld 19009 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝐵)
194 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑒𝑤) = (𝑒𝑥))
195 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑥))
196194, 195oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑥) · (𝑀 Σg 𝑥)))
1972, 158, 113, 166, 182, 183, 184, 193, 196gsumunsn 19872 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
198197adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ ( ∪ {𝑥}) ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
199154, 157, 1983eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))))
200105ad8antlr 741 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubGrp‘𝑅))
201124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒 Fn Word 𝐴)
202 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
203201, 187, 202fmptunsnop 32681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
204203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
205204fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
206 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))
207 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ 𝑦 = 𝑥) → 0 = 0)
208201ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑒 Fn Word 𝐴)
209114ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → Word 𝐴 ∈ V)
210 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ℤ)
211 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 = 𝑤)
212 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ (Word 𝐴))
213212eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑤 ∈ Word 𝐴)
214211, 213eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
215 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒 supp 0) = ( ∪ {𝑥}))
216212eldifbd 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑤)
217211, 216eqneltrd 2851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦)
218 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 = 𝑥)
219218neqned 2935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦𝑥)
220 nelsn 4616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → ¬ 𝑦 ∈ {𝑥})
221219, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ {𝑥})
222 nelun 32493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒 supp 0) = ( ∪ {𝑥}) → (¬ 𝑦 ∈ (𝑒 supp 0) ↔ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})))
223222biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒 supp 0) = ( ∪ {𝑥}) ∧ (¬ 𝑦 ∧ ¬ 𝑦 ∈ {𝑥})) → ¬ 𝑦 ∈ (𝑒 supp 0))
224215, 217, 221, 223syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → ¬ 𝑦 ∈ (𝑒 supp 0))
225214, 224eldifd 3908 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (Word 𝐴 ∖ (𝑒 supp 0)))
226208, 209, 210, 225fvdifsupp 8101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) = 0)
227207, 226ifeqda 4509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = 0)
228 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ (Word 𝐴))
229228eldifad 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 𝑤 ∈ Word 𝐴)
230 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → 0 ∈ ℤ)
231206, 227, 229, 230fvmptd2 6937 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = 0)
232205, 231eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = 0)
233232oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0 · (𝑀 Σg 𝑤)))
234229, 148syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (𝑀 Σg 𝑤) ∈ 𝐵)
235234, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → (0 · (𝑀 Σg 𝑤)) = (0g𝑅))
236233, 235eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ (Word 𝐴)) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = (0g𝑅))
237203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
238237fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
239 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
240151ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
241 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
242240, 241ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
243239, 242ifclda 4508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
244243fmpttd 7048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
245244ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) ∈ ℤ)
246238, 245eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) ∈ ℤ)
2472, 11, 141, 246, 148mulgcld 19009 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤 ∈ Word 𝐴) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) ∈ 𝐵)
2482, 41, 113, 114, 236, 166, 247, 178gsummptres2 33033 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
249248adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
250203adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
251250fveq1d 6824 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
252 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
253 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑤)
254252, 253eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → 𝑦)
255184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑥)
256 nelneq 2855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦 ∧ ¬ 𝑥) → ¬ 𝑦 = 𝑥)
257254, 255, 256syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → ¬ 𝑦 = 𝑥)
258257iffalsed 4483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑦))
259252fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → (𝑒𝑦) = (𝑒𝑤))
260258, 259eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) ∧ 𝑦 = 𝑤) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) = (𝑒𝑤))
261206, 260, 179, 180fvmptd2 6937 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦)))‘𝑤) = (𝑒𝑤))
262251, 261eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) = (𝑒𝑤))
263262oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑤) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)) = ((𝑒𝑤) · (𝑀 Σg 𝑤)))
264263mpteq2dva 5182 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
265264adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))
266265oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
267249, 266eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))))
268 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒𝐹)
269268resexd 5976 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∈ V)
270 snex 5372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {⟨𝑥, 0⟩} ∈ V
271270a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → {⟨𝑥, 0⟩} ∈ V)
272269, 271, 202suppun2 32665 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)))
273114, 202, 201fdifsupp 32666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = ((𝑒 supp 0) ∖ {𝑥}))
274 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒 supp 0) = ( ∪ {𝑥}))
275274difeq1d 4072 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 supp 0) ∖ {𝑥}) = (( ∪ {𝑥}) ∖ {𝑥}))
276 disjsn 4661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ ↔ ¬ 𝑥)
277 undif5 4432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (( ∩ {𝑥}) = ∅ → (( ∪ {𝑥}) ∖ {𝑥}) = )
278276, 277sylbir 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 → (( ∪ {𝑥}) ∖ {𝑥}) = )
279184, 278syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (( ∪ {𝑥}) ∖ {𝑥}) = )
280273, 275, 2793eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) = )
281 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑥 ∈ V
282 c0ex 11106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
283281, 282xpsn 7074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ({𝑥} × {0}) = {⟨𝑥, 0⟩}
284283oveq1i 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ({⟨𝑥, 0⟩} supp 0)
285 fczsupp0 8123 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (({𝑥} × {0}) supp 0) = ∅
286284, 285eqtr3i 2756 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({⟨𝑥, 0⟩} supp 0) = ∅
287286a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ({⟨𝑥, 0⟩} supp 0) = ∅)
288280, 287uneq12d 4116 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) supp 0) ∪ ({⟨𝑥, 0⟩} supp 0)) = ( ∪ ∅))
289 un0 4341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∪ ∅) =
290289a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ( ∪ ∅) = )
291272, 288, 2903eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
292291adantllr 719 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = )
293 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 supp 0) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0))
294293eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓 supp 0) = ↔ (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = ))
295 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓𝑤) = (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤))
296295oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑓𝑤) · (𝑀 Σg 𝑤)) = ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))
297296mpteq2dv 5183 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤))))
298297oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))))
299298eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
300294, 299imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
301 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
302 breq1 5092 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) → (𝑓 finSupp 0 ↔ ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0))
30354a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ℤ ∈ V)
304114adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ∈ V)
305203adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))) = ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
306 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ 𝑦 = 𝑥) → 0 ∈ ℤ)
307 simp-10l 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝜑)
308 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒𝐹)
309307, 308, 121syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑒:Word 𝐴⟶ℤ)
310 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ Word 𝐴)
311309, 310ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) ∧ ¬ 𝑦 = 𝑥) → (𝑒𝑦) ∈ ℤ)
312306, 311ifclda 4508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) ∧ 𝑦 ∈ Word 𝐴) → if(𝑦 = 𝑥, 0, (𝑒𝑦)) ∈ ℤ)
313312fmpttd 7048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑦 ∈ Word 𝐴 ↦ if(𝑦 = 𝑥, 0, (𝑒𝑦))):Word 𝐴⟶ℤ)
314305, 313feq1dd 6634 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}):Word 𝐴⟶ℤ)
315303, 304, 314elmapdd 8765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ (ℤ ↑m Word 𝐴))
316 0zd 12480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 0 ∈ ℤ)
317314ffund 6655 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Fun ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}))
318166adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ∈ Fin)
319292, 318eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) ∈ Fin)
320315, 316, 317, 319isfsuppd 9250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) finSupp 0)
321302, 315, 320elrabd 3644 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ {𝑓 ∈ (ℤ ↑m Word 𝐴) ∣ 𝑓 finSupp 0})
322321, 12eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) ∈ 𝐹)
323300, 301, 322rspcdva 3573 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩}) supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
324292, 323mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((((𝑒 ↾ (Word 𝐴 ∖ {𝑥})) ∪ {⟨𝑥, 0⟩})‘𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
325267, 324eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
32686ad8antr 740 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑅 ∈ Grp)
32710subrgsubm 20500 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ (SubRing‘𝑅) → 𝑡 ∈ (SubMnd‘𝑀))
328327ad8antlr 741 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑡 ∈ (SubMnd‘𝑀))
329 sswrd 14429 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴𝑡 → Word 𝐴 ⊆ Word 𝑡)
330329ad7antlr 739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → Word 𝐴 ⊆ Word 𝑡)
331187adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝐴)
332330, 331sseldd 3930 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑥 ∈ Word 𝑡)
333 gsumwsubmcl 18745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ (SubMnd‘𝑀) ∧ 𝑥 ∈ Word 𝑡) → (𝑀 Σg 𝑥) ∈ 𝑡)
334328, 332, 333syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑀 Σg 𝑥) ∈ 𝑡)
335123ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → 𝑒:Word 𝐴⟶ℤ)
336335, 331ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑒𝑥) ∈ ℤ)
3372, 11, 326, 334, 200, 336subgmulgcld 33024 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑒𝑥) · (𝑀 Σg 𝑥)) ∈ 𝑡)
338158, 200, 325, 337subgcld 33022 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → ((𝑅 Σg (𝑤 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))))(+g𝑅)((𝑒𝑥) · (𝑀 Σg 𝑥))) ∈ 𝑡)
339199, 338eqeltrd 2831 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) ∧ (𝑒 supp 0) = ( ∪ {𝑥})) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
340339ex 412 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) ∧ 𝑒𝐹) → ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
341340ralrimiva 3124 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) ∧ ∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
342341ex 412 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ⊆ (𝑔 supp 0)) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ )) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
343342anasss 466 . . . . . . . . . . . . . . 15 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
344 oveq1 7353 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑒 supp 0) = (𝑓 supp 0))
345344eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑒 supp 0) = ( ∪ {𝑥}) ↔ (𝑓 supp 0) = ( ∪ {𝑥})))
346 fveq1 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑓 → (𝑒𝑤) = (𝑓𝑤))
347346oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑓 → ((𝑒𝑤) · (𝑀 Σg 𝑤)) = ((𝑓𝑤) · (𝑀 Σg 𝑤)))
348347mpteq2dv 5183 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑓 → (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤))) = (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤))))
349348oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑓 → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))))
350349eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑓 → ((𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡 ↔ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
351345, 350imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑓 → (((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
352351cbvralvw 3210 . . . . . . . . . . . . . . 15 (∀𝑒𝐹 ((𝑒 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑒𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) ↔ ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
353343, 352imbitrdi 251 . . . . . . . . . . . . . 14 (((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) ∧ ( ⊆ (𝑔 supp 0) ∧ 𝑥 ∈ ((𝑔 supp 0) ∖ ))) → (∀𝑓𝐹 ((𝑓 supp 0) = → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡) → ∀𝑓𝐹 ((𝑓 supp 0) = ( ∪ {𝑥}) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)))
35431, 34, 37, 40, 112, 353, 163findcard2d 9076 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ∀𝑓𝐹 ((𝑓 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑓𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
355 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → 𝑔𝐹)
35628, 354, 355rspcdva 3573 . . . . . . . . . . . 12 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → ((𝑔 supp 0) = (𝑔 supp 0) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡))
35720, 356mpd 15 . . . . . . . . . . 11 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑔𝐹) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
358357ad4ant13 751 . . . . . . . . . 10 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))) ∈ 𝑡)
35919, 358eqeltrd 2831 . . . . . . . . 9 ((((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) ∧ 𝑔𝐹) ∧ 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) → 𝑠𝑡)
360 eqid 2731 . . . . . . . . . 10 (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))) = (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
36113eleq2i 2823 . . . . . . . . . . . 12 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
362361biimpi 216 . . . . . . . . . . 11 (𝑠𝑆𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
363362adantl 481 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠 ∈ ran (𝑔𝐹 ↦ (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤))))))
364360, 363elrnmpt2d 5905 . . . . . . . . 9 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → ∃𝑔𝐹 𝑠 = (𝑅 Σg (𝑤 ∈ Word 𝐴 ↦ ((𝑔𝑤) · (𝑀 Σg 𝑤)))))
365359, 364r19.29a 3140 . . . . . . . 8 ((((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) ∧ 𝑠𝑆) → 𝑠𝑡)
366365ex 412 . . . . . . 7 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → (𝑠𝑆𝑠𝑡))
367366ssrdv 3935 . . . . . 6 (((𝜑𝑡 ∈ (SubRing‘𝑅)) ∧ 𝐴𝑡) → 𝑆𝑡)
368367ex 412 . . . . 5 ((𝜑𝑡 ∈ (SubRing‘𝑅)) → (𝐴𝑡𝑆𝑡))
369368ralrimiva 3124 . . . 4 (𝜑 → ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
370 ssintrab 4919 . . . 4 (𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ↔ ∀𝑡 ∈ (SubRing‘𝑅)(𝐴𝑡𝑆𝑡))
371369, 370sylibr 234 . . 3 (𝜑𝑆 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
37218, 371eqssd 3947 . 2 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} = 𝑆)
3738, 372eqtrd 2766 1 (𝜑 → (𝑁𝐴) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573  cop 4579   cint 4895   class class class wbr 5089  cmpt 5170   × cxp 5612  ran crn 5615  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  cz 12468  Word cword 14420  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  SubMndcsubmnd 18690  Grpcgrp 18846  .gcmg 18980  SubGrpcsubg 19033  CMndccmn 19692  mulGrpcmgp 20058  Ringcrg 20151  SubRingcsubrg 20484  RingSpancrgspn 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  elrgspn  33213
  Copyright terms: Public domain W3C validator