MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptd Structured version   Visualization version   GIF version

Theorem fnmptd 6689
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnmptd.1 𝑥𝜑
fnmptd.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fnmptd.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.1 . . 3 𝑥𝜑
2 fnmptd.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3243 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 fnmptd.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fnmpt 6688 . 2 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
74, 6syl 17 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wral 3050  cmpt 5205   Fn wfn 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-fun 6543  df-fn 6544
This theorem is referenced by:  rngqiprngimf1  21272  elrgspnsubrunlem2  33191  nsgmgc  33375  nsgqusf1o  33379  elrspunsn  33392  ply1gsumz  33554  ply1degltdimlem  33608  evls1fldgencl  33657  ply1annidllem  33681  algextdeglem6  33702  metakunt33  42197  limsupequzmptlem  45700  liminfval2  45740  smflimmpt  46782  smflimsuplem7  46798  cfsetsnfsetfo  47030
  Copyright terms: Public domain W3C validator