![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmptd | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fnmptd.1 | ⊢ Ⅎ𝑥𝜑 |
fnmptd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
fnmptd.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmptd | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmptd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | fnmptd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
4 | 1, 3 | ralrimi 3246 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
5 | fnmptd.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | fnmpt 6681 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
7 | 4, 6 | syl 17 | 1 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3053 ↦ cmpt 5222 Fn wfn 6529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-fun 6536 df-fn 6537 |
This theorem is referenced by: rngqiprngimf1 21145 nsgmgc 32995 nsgqusf1o 32999 elrspunsn 33019 ply1gsumz 33138 ply1degltdimlem 33189 evls1fldgencl 33227 ply1annidllem 33245 algextdeglem6 33261 metakunt33 41514 limsupequzmptlem 44954 liminfval2 44994 smflimmpt 46036 smflimsuplem7 46052 cfsetsnfsetfo 46280 |
Copyright terms: Public domain | W3C validator |