MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptd Structured version   Visualization version   GIF version

Theorem fnmptd 6574
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnmptd.1 𝑥𝜑
fnmptd.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fnmptd.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.1 . . 3 𝑥𝜑
2 fnmptd.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 413 . . 3 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3141 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 fnmptd.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fnmpt 6573 . 2 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
74, 6syl 17 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  cmpt 5157   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436
This theorem is referenced by:  nsgmgc  31597  nsgqusf1o  31601  metakunt33  40157  limsupequzmptlem  43269  liminfval2  43309  smflimmpt  44343  smflimsuplem7  44359  cfsetsnfsetfo  44554
  Copyright terms: Public domain W3C validator