MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptd Structured version   Visualization version   GIF version

Theorem fnmptd 6710
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnmptd.1 𝑥𝜑
fnmptd.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fnmptd.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.1 . . 3 𝑥𝜑
2 fnmptd.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3255 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 fnmptd.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fnmpt 6709 . 2 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
74, 6syl 17 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wral 3059  cmpt 5231   Fn wfn 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-fun 6565  df-fn 6566
This theorem is referenced by:  rngqiprngimf1  21328  nsgmgc  33420  nsgqusf1o  33424  elrspunsn  33437  ply1gsumz  33599  ply1degltdimlem  33650  evls1fldgencl  33695  ply1annidllem  33709  algextdeglem6  33728  metakunt33  42219  limsupequzmptlem  45684  liminfval2  45724  smflimmpt  46766  smflimsuplem7  46782  cfsetsnfsetfo  47010
  Copyright terms: Public domain W3C validator