MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptd Structured version   Visualization version   GIF version

Theorem fnmptd 6721
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnmptd.1 𝑥𝜑
fnmptd.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fnmptd.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.1 . . 3 𝑥𝜑
2 fnmptd.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3263 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 fnmptd.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fnmpt 6720 . 2 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
74, 6syl 17 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wral 3067  cmpt 5249   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-fun 6575  df-fn 6576
This theorem is referenced by:  rngqiprngimf1  21333  nsgmgc  33405  nsgqusf1o  33409  elrspunsn  33422  ply1gsumz  33584  ply1degltdimlem  33635  evls1fldgencl  33680  ply1annidllem  33694  algextdeglem6  33713  metakunt33  42194  limsupequzmptlem  45649  liminfval2  45689  smflimmpt  46731  smflimsuplem7  46747  cfsetsnfsetfo  46975
  Copyright terms: Public domain W3C validator