MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmptd Structured version   Visualization version   GIF version

Theorem fnmptd 6558
Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnmptd.1 𝑥𝜑
fnmptd.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fnmptd.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.1 . . 3 𝑥𝜑
2 fnmptd.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵𝑉))
41, 3ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
5 fnmptd.3 . . 3 𝐹 = (𝑥𝐴𝐵)
65fnmpt 6557 . 2 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
74, 6syl 17 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  cmpt 5153   Fn wfn 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421
This theorem is referenced by:  nsgmgc  31499  nsgqusf1o  31503  metakunt33  40085  limsupequzmptlem  43159  liminfval2  43199  smflimmpt  44230  smflimsuplem7  44246  cfsetsnfsetfo  44441
  Copyright terms: Public domain W3C validator