Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetfo Structured version   Visualization version   GIF version

Theorem cfsetsnfsetfo 47072
Description: The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetfo ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺onto𝐹)
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑔,𝑌   𝐴,𝑏,𝑓,𝑧   𝑥,𝐵   𝐵,𝑎,𝑏,𝑓   𝑔,𝐹   𝐺,𝑎,𝑏,𝑧   𝑉,𝑎,𝑏,𝑧   𝑌,𝑎,𝑏,𝑓,𝑧   𝑥,𝑌,𝑔,𝑏   𝑓,𝑔,𝑧   𝑧,𝐵   𝑥,𝑏,𝑧   𝐻,𝑏
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑔)   𝐹(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐺(𝑥,𝑓)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎)   𝑉(𝑥,𝑓)

Proof of Theorem cfsetsnfsetfo
Dummy variables 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfsetsnfsetfv.f . . 3 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
2 cfsetsnfsetfv.g . . 3 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
3 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
41, 2, 3cfsetsnfsetf 47070 . 2 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺𝐹)
5 vex 3484 . . . . 5 𝑚 ∈ V
6 feq1 6716 . . . . . 6 (𝑓 = 𝑚 → (𝑓:𝐴𝐵𝑚:𝐴𝐵))
7 fveq1 6905 . . . . . . . . . 10 (𝑓 = 𝑚 → (𝑓𝑧) = (𝑚𝑧))
87adantr 480 . . . . . . . . 9 ((𝑓 = 𝑚𝑧𝐴) → (𝑓𝑧) = (𝑚𝑧))
98eqeq1d 2739 . . . . . . . 8 ((𝑓 = 𝑚𝑧𝐴) → ((𝑓𝑧) = 𝑏 ↔ (𝑚𝑧) = 𝑏))
109ralbidva 3176 . . . . . . 7 (𝑓 = 𝑚 → (∀𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∀𝑧𝐴 (𝑚𝑧) = 𝑏))
1110rexbidv 3179 . . . . . 6 (𝑓 = 𝑚 → (∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏 ↔ ∃𝑏𝐵𝑧𝐴 (𝑚𝑧) = 𝑏))
126, 11anbi12d 632 . . . . 5 (𝑓 = 𝑚 → ((𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏) ↔ (𝑚:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑚𝑧) = 𝑏)))
135, 12, 1elab2 3682 . . . 4 (𝑚𝐹 ↔ (𝑚:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑚𝑧) = 𝑏))
14 simpllr 776 . . . . . . . . . . 11 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) ∧ 𝑦 ∈ {𝑌}) → 𝑏𝐵)
15 eqid 2737 . . . . . . . . . . 11 (𝑦 ∈ {𝑌} ↦ 𝑏) = (𝑦 ∈ {𝑌} ↦ 𝑏)
1614, 15fmptd 7134 . . . . . . . . . 10 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → (𝑦 ∈ {𝑌} ↦ 𝑏):{𝑌}⟶𝐵)
17 snex 5436 . . . . . . . . . . . 12 {𝑌} ∈ V
1817mptex 7243 . . . . . . . . . . 11 (𝑦 ∈ {𝑌} ↦ 𝑏) ∈ V
19 feq1 6716 . . . . . . . . . . 11 (𝑥 = (𝑦 ∈ {𝑌} ↦ 𝑏) → (𝑥:{𝑌}⟶𝐵 ↔ (𝑦 ∈ {𝑌} ↦ 𝑏):{𝑌}⟶𝐵))
2018, 19, 2elab2 3682 . . . . . . . . . 10 ((𝑦 ∈ {𝑌} ↦ 𝑏) ∈ 𝐺 ↔ (𝑦 ∈ {𝑌} ↦ 𝑏):{𝑌}⟶𝐵)
2116, 20sylibr 234 . . . . . . . . 9 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → (𝑦 ∈ {𝑌} ↦ 𝑏) ∈ 𝐺)
22 fveq1 6905 . . . . . . . . . . . 12 (𝑛 = (𝑦 ∈ {𝑌} ↦ 𝑏) → (𝑛𝑌) = ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))
2322mpteq2dv 5244 . . . . . . . . . . 11 (𝑛 = (𝑦 ∈ {𝑌} ↦ 𝑏) → (𝑎𝐴 ↦ (𝑛𝑌)) = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)))
2423eqeq2d 2748 . . . . . . . . . 10 (𝑛 = (𝑦 ∈ {𝑌} ↦ 𝑏) → (𝑚 = (𝑎𝐴 ↦ (𝑛𝑌)) ↔ 𝑚 = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))))
2524adantl 481 . . . . . . . . 9 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) ∧ 𝑛 = (𝑦 ∈ {𝑌} ↦ 𝑏)) → (𝑚 = (𝑎𝐴 ↦ (𝑛𝑌)) ↔ 𝑚 = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))))
26 simpr 484 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → (𝑚𝑧) = 𝑏)
27 eqidd 2738 . . . . . . . . . . . . . . 15 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)))
28 eqidd 2738 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) ∧ 𝑎 = 𝑧) → (𝑦 ∈ {𝑌} ↦ 𝑏) = (𝑦 ∈ {𝑌} ↦ 𝑏))
29 eqidd 2738 . . . . . . . . . . . . . . . 16 ((((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) ∧ 𝑎 = 𝑧) ∧ 𝑦 = 𝑌) → 𝑏 = 𝑏)
30 snidg 4660 . . . . . . . . . . . . . . . . 17 (𝑌𝐴𝑌 ∈ {𝑌})
3130ad6antlr 737 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) ∧ 𝑎 = 𝑧) → 𝑌 ∈ {𝑌})
32 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → 𝑏𝐵)
3332adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) ∧ 𝑎 = 𝑧) → 𝑏𝐵)
3428, 29, 31, 33fvmptd 7023 . . . . . . . . . . . . . . 15 (((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) ∧ 𝑎 = 𝑧) → ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌) = 𝑏)
35 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) → 𝑧𝐴)
3635adantr 480 . . . . . . . . . . . . . . 15 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → 𝑧𝐴)
3727, 34, 36, 32fvmptd 7023 . . . . . . . . . . . . . 14 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧) = 𝑏)
3826, 37eqtr4d 2780 . . . . . . . . . . . . 13 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) ∧ (𝑚𝑧) = 𝑏) → (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧))
3938ex 412 . . . . . . . . . . . 12 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ 𝑧𝐴) → ((𝑚𝑧) = 𝑏 → (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧)))
4039ralimdva 3167 . . . . . . . . . . 11 ((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) → (∀𝑧𝐴 (𝑚𝑧) = 𝑏 → ∀𝑧𝐴 (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧)))
4140imp 406 . . . . . . . . . 10 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → ∀𝑧𝐴 (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧))
42 ffn 6736 . . . . . . . . . . . . . . 15 (𝑚:𝐴𝐵𝑚 Fn 𝐴)
4342adantl 481 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) → 𝑚 Fn 𝐴)
44 nfv 1914 . . . . . . . . . . . . . . 15 𝑎((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵)
45 fvexd 6921 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑎𝐴) → ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌) ∈ V)
46 eqid 2737 . . . . . . . . . . . . . . 15 (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))
4744, 45, 46fnmptd 6709 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) → (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) Fn 𝐴)
4843, 47jca 511 . . . . . . . . . . . . 13 (((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) → (𝑚 Fn 𝐴 ∧ (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) Fn 𝐴))
4948adantr 480 . . . . . . . . . . . 12 ((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) → (𝑚 Fn 𝐴 ∧ (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) Fn 𝐴))
5049adantr 480 . . . . . . . . . . 11 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → (𝑚 Fn 𝐴 ∧ (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) Fn 𝐴))
51 eqfnfv 7051 . . . . . . . . . . 11 ((𝑚 Fn 𝐴 ∧ (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) Fn 𝐴) → (𝑚 = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) ↔ ∀𝑧𝐴 (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧)))
5250, 51syl 17 . . . . . . . . . 10 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → (𝑚 = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)) ↔ ∀𝑧𝐴 (𝑚𝑧) = ((𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌))‘𝑧)))
5341, 52mpbird 257 . . . . . . . . 9 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → 𝑚 = (𝑎𝐴 ↦ ((𝑦 ∈ {𝑌} ↦ 𝑏)‘𝑌)))
5421, 25, 53rspcedvd 3624 . . . . . . . 8 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → ∃𝑛𝐺 𝑚 = (𝑎𝐴 ↦ (𝑛𝑌)))
55 simp-4l 783 . . . . . . . . . . 11 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → 𝐴𝑉)
561, 2, 3cfsetsnfsetfv 47069 . . . . . . . . . . 11 ((𝐴𝑉𝑛𝐺) → (𝐻𝑛) = (𝑎𝐴 ↦ (𝑛𝑌)))
5755, 56sylan 580 . . . . . . . . . 10 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) ∧ 𝑛𝐺) → (𝐻𝑛) = (𝑎𝐴 ↦ (𝑛𝑌)))
5857eqeq2d 2748 . . . . . . . . 9 ((((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) ∧ 𝑛𝐺) → (𝑚 = (𝐻𝑛) ↔ 𝑚 = (𝑎𝐴 ↦ (𝑛𝑌))))
5958rexbidva 3177 . . . . . . . 8 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → (∃𝑛𝐺 𝑚 = (𝐻𝑛) ↔ ∃𝑛𝐺 𝑚 = (𝑎𝐴 ↦ (𝑛𝑌))))
6054, 59mpbird 257 . . . . . . 7 (((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧) = 𝑏) → ∃𝑛𝐺 𝑚 = (𝐻𝑛))
6160ex 412 . . . . . 6 ((((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) ∧ 𝑏𝐵) → (∀𝑧𝐴 (𝑚𝑧) = 𝑏 → ∃𝑛𝐺 𝑚 = (𝐻𝑛)))
6261rexlimdva 3155 . . . . 5 (((𝐴𝑉𝑌𝐴) ∧ 𝑚:𝐴𝐵) → (∃𝑏𝐵𝑧𝐴 (𝑚𝑧) = 𝑏 → ∃𝑛𝐺 𝑚 = (𝐻𝑛)))
6362expimpd 453 . . . 4 ((𝐴𝑉𝑌𝐴) → ((𝑚:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑚𝑧) = 𝑏) → ∃𝑛𝐺 𝑚 = (𝐻𝑛)))
6413, 63biimtrid 242 . . 3 ((𝐴𝑉𝑌𝐴) → (𝑚𝐹 → ∃𝑛𝐺 𝑚 = (𝐻𝑛)))
6564ralrimiv 3145 . 2 ((𝐴𝑉𝑌𝐴) → ∀𝑚𝐹𝑛𝐺 𝑚 = (𝐻𝑛))
66 dffo3 7122 . 2 (𝐻:𝐺onto𝐹 ↔ (𝐻:𝐺𝐹 ∧ ∀𝑚𝐹𝑛𝐺 𝑚 = (𝐻𝑛)))
674, 65, 66sylanbrc 583 1 ((𝐴𝑉𝑌𝐴) → 𝐻:𝐺onto𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  Vcvv 3480  {csn 4626  cmpt 5225   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  cfsetsnfsetf1o  47073
  Copyright terms: Public domain W3C validator