Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt33 Structured version   Visualization version   GIF version

Theorem metakunt33 40655
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt33.1 (𝜑𝑀 ∈ ℕ)
metakunt33.2 (𝜑𝐼 ∈ ℕ)
metakunt33.3 (𝜑𝐼𝑀)
metakunt33.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt33.5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt33.6 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt33.7 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt33 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Distinct variable groups:   𝑤,𝐼   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑤,𝑀   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝜑,𝑤   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem metakunt33
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 metakunt33.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
2 metakunt33.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
3 metakunt33.3 . . . . 5 (𝜑𝐼𝑀)
4 metakunt33.6 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
51, 2, 3, 4metakunt2 40624 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6 metakunt33.5 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
71, 2, 3, 6metakunt25 40647 . . . . . 6 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
8 f1of 6785 . . . . . 6 (𝐵:(1...𝑀)–1-1-onto→(1...𝑀) → 𝐵:(1...𝑀)⟶(1...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐵:(1...𝑀)⟶(1...𝑀))
10 metakunt33.4 . . . . . 6 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
111, 2, 3, 10metakunt1 40623 . . . . 5 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
129, 11fcod 6695 . . . 4 (𝜑 → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
135, 12fcod 6695 . . 3 (𝜑 → (𝐶 ∘ (𝐵𝐴)):(1...𝑀)⟶(1...𝑀))
1413ffnd 6670 . 2 (𝜑 → (𝐶 ∘ (𝐵𝐴)) Fn (1...𝑀))
15 nfv 1918 . . 3 𝑤𝜑
16 elfzelz 13447 . . . . 5 (𝑤 ∈ (1...𝑀) → 𝑤 ∈ ℤ)
1716adantl 483 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑤 ∈ ℤ)
181nnzd 12531 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1918adantr 482 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
202nnzd 12531 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
2120adantr 482 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
2219, 21zsubcld 12617 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑀𝐼) ∈ ℤ)
2317, 22zaddcld 12616 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤 + (𝑀𝐼)) ∈ ℤ)
24 1zzd 12539 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 1 ∈ ℤ)
25 0zd 12516 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 0 ∈ ℤ)
2624, 25ifcld 4533 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0) ∈ ℤ)
2723, 26zaddcld 12616 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)) ∈ ℤ)
2817, 21zsubcld 12617 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤𝐼) ∈ ℤ)
2924, 25ifcld 4533 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤𝐼), 1, 0) ∈ ℤ)
3028, 29zaddcld 12616 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)) ∈ ℤ)
3127, 30ifcld 4533 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0))) ∈ ℤ)
3217, 31ifcld 4533 . . 3 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))) ∈ ℤ)
33 metakunt33.7 . . 3 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
3415, 32, 33fnmptd 6643 . 2 (𝜑𝐷 Fn (1...𝑀))
3512adantr 482 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
36 simpr 486 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
3735, 36fvco3d 6942 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘((𝐵𝐴)‘𝑎)))
3811adantr 482 . . . . . 6 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐴:(1...𝑀)⟶(1...𝑀))
3938, 36fvco3d 6942 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐵𝐴)‘𝑎) = (𝐵‘(𝐴𝑎)))
4039fveq2d 6847 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘((𝐵𝐴)‘𝑎)) = (𝐶‘(𝐵‘(𝐴𝑎))))
4137, 40eqtrd 2773 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘(𝐵‘(𝐴𝑎))))
421adantr 482 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
432adantr 482 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
443adantr 482 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
45 eqid 2733 . . . . 5 if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)
46 eqid 2733 . . . . 5 if(𝐼 ≤ (𝑎𝐼), 1, 0) = if(𝐼 ≤ (𝑎𝐼), 1, 0)
47 eqid 2733 . . . . 5 if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0))))
4842, 43, 44, 36, 10, 6, 4, 45, 46, 47metakunt31 40653 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
4942, 43, 44, 36, 33, 45, 46, 47metakunt32 40654 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐷𝑎) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
5049eqcomd 2739 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = (𝐷𝑎))
5148, 50eqtrd 2773 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = (𝐷𝑎))
5241, 51eqtrd 2773 . 2 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐷𝑎))
5314, 34, 52eqfnfvd 6986 1 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4487   class class class wbr 5106  cmpt 5189  ccom 5638  wf 6493  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358  0cc0 11056  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390  cn 12158  cz 12504  ...cfz 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-fzo 13574
This theorem is referenced by:  metakunt34  40656
  Copyright terms: Public domain W3C validator