Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt33 Structured version   Visualization version   GIF version

Theorem metakunt33 41943
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt33.1 (𝜑𝑀 ∈ ℕ)
metakunt33.2 (𝜑𝐼 ∈ ℕ)
metakunt33.3 (𝜑𝐼𝑀)
metakunt33.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt33.5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt33.6 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt33.7 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt33 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Distinct variable groups:   𝑤,𝐼   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑤,𝑀   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝜑,𝑤   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem metakunt33
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 metakunt33.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
2 metakunt33.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
3 metakunt33.3 . . . . 5 (𝜑𝐼𝑀)
4 metakunt33.6 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
51, 2, 3, 4metakunt2 41912 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6 metakunt33.5 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
71, 2, 3, 6metakunt25 41935 . . . . . 6 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
8 f1of 6833 . . . . . 6 (𝐵:(1...𝑀)–1-1-onto→(1...𝑀) → 𝐵:(1...𝑀)⟶(1...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐵:(1...𝑀)⟶(1...𝑀))
10 metakunt33.4 . . . . . 6 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
111, 2, 3, 10metakunt1 41911 . . . . 5 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
129, 11fcod 6744 . . . 4 (𝜑 → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
135, 12fcod 6744 . . 3 (𝜑 → (𝐶 ∘ (𝐵𝐴)):(1...𝑀)⟶(1...𝑀))
1413ffnd 6719 . 2 (𝜑 → (𝐶 ∘ (𝐵𝐴)) Fn (1...𝑀))
15 nfv 1910 . . 3 𝑤𝜑
16 elfzelz 13547 . . . . 5 (𝑤 ∈ (1...𝑀) → 𝑤 ∈ ℤ)
1716adantl 480 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑤 ∈ ℤ)
181nnzd 12629 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1918adantr 479 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
202nnzd 12629 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
2120adantr 479 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
2219, 21zsubcld 12715 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑀𝐼) ∈ ℤ)
2317, 22zaddcld 12714 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤 + (𝑀𝐼)) ∈ ℤ)
24 1zzd 12637 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 1 ∈ ℤ)
25 0zd 12614 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 0 ∈ ℤ)
2624, 25ifcld 4570 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0) ∈ ℤ)
2723, 26zaddcld 12714 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)) ∈ ℤ)
2817, 21zsubcld 12715 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤𝐼) ∈ ℤ)
2924, 25ifcld 4570 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤𝐼), 1, 0) ∈ ℤ)
3028, 29zaddcld 12714 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)) ∈ ℤ)
3127, 30ifcld 4570 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0))) ∈ ℤ)
3217, 31ifcld 4570 . . 3 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))) ∈ ℤ)
33 metakunt33.7 . . 3 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
3415, 32, 33fnmptd 6692 . 2 (𝜑𝐷 Fn (1...𝑀))
3512adantr 479 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
36 simpr 483 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
3735, 36fvco3d 6992 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘((𝐵𝐴)‘𝑎)))
3811adantr 479 . . . . . 6 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐴:(1...𝑀)⟶(1...𝑀))
3938, 36fvco3d 6992 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐵𝐴)‘𝑎) = (𝐵‘(𝐴𝑎)))
4039fveq2d 6895 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘((𝐵𝐴)‘𝑎)) = (𝐶‘(𝐵‘(𝐴𝑎))))
4137, 40eqtrd 2766 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘(𝐵‘(𝐴𝑎))))
421adantr 479 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
432adantr 479 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
443adantr 479 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
45 eqid 2726 . . . . 5 if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)
46 eqid 2726 . . . . 5 if(𝐼 ≤ (𝑎𝐼), 1, 0) = if(𝐼 ≤ (𝑎𝐼), 1, 0)
47 eqid 2726 . . . . 5 if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0))))
4842, 43, 44, 36, 10, 6, 4, 45, 46, 47metakunt31 41941 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
4942, 43, 44, 36, 33, 45, 46, 47metakunt32 41942 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐷𝑎) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
5049eqcomd 2732 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = (𝐷𝑎))
5148, 50eqtrd 2766 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = (𝐷𝑎))
5241, 51eqtrd 2766 . 2 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐷𝑎))
5314, 34, 52eqfnfvd 7037 1 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ifcif 4524   class class class wbr 5144  cmpt 5227  ccom 5677  wf 6540  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7414  0cc0 11147  1c1 11148   + caddc 11150   < clt 11287  cle 11288  cmin 11483  cn 12256  cz 12602  ...cfz 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-z 12603  df-uz 12867  df-rp 13021  df-fz 13531  df-fzo 13674
This theorem is referenced by:  metakunt34  41944
  Copyright terms: Public domain W3C validator