Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt33 Structured version   Visualization version   GIF version

Theorem metakunt33 42219
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt33.1 (𝜑𝑀 ∈ ℕ)
metakunt33.2 (𝜑𝐼 ∈ ℕ)
metakunt33.3 (𝜑𝐼𝑀)
metakunt33.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt33.5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt33.6 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt33.7 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt33 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Distinct variable groups:   𝑤,𝐼   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑤,𝑀   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝜑,𝑤   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem metakunt33
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 metakunt33.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
2 metakunt33.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
3 metakunt33.3 . . . . 5 (𝜑𝐼𝑀)
4 metakunt33.6 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
51, 2, 3, 4metakunt2 42188 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6 metakunt33.5 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
71, 2, 3, 6metakunt25 42211 . . . . . 6 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
8 f1of 6849 . . . . . 6 (𝐵:(1...𝑀)–1-1-onto→(1...𝑀) → 𝐵:(1...𝑀)⟶(1...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐵:(1...𝑀)⟶(1...𝑀))
10 metakunt33.4 . . . . . 6 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
111, 2, 3, 10metakunt1 42187 . . . . 5 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
129, 11fcod 6762 . . . 4 (𝜑 → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
135, 12fcod 6762 . . 3 (𝜑 → (𝐶 ∘ (𝐵𝐴)):(1...𝑀)⟶(1...𝑀))
1413ffnd 6738 . 2 (𝜑 → (𝐶 ∘ (𝐵𝐴)) Fn (1...𝑀))
15 nfv 1912 . . 3 𝑤𝜑
16 elfzelz 13561 . . . . 5 (𝑤 ∈ (1...𝑀) → 𝑤 ∈ ℤ)
1716adantl 481 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑤 ∈ ℤ)
181nnzd 12638 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1918adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
202nnzd 12638 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
2120adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
2219, 21zsubcld 12725 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑀𝐼) ∈ ℤ)
2317, 22zaddcld 12724 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤 + (𝑀𝐼)) ∈ ℤ)
24 1zzd 12646 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 1 ∈ ℤ)
25 0zd 12623 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 0 ∈ ℤ)
2624, 25ifcld 4577 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0) ∈ ℤ)
2723, 26zaddcld 12724 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)) ∈ ℤ)
2817, 21zsubcld 12725 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤𝐼) ∈ ℤ)
2924, 25ifcld 4577 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤𝐼), 1, 0) ∈ ℤ)
3028, 29zaddcld 12724 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)) ∈ ℤ)
3127, 30ifcld 4577 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0))) ∈ ℤ)
3217, 31ifcld 4577 . . 3 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))) ∈ ℤ)
33 metakunt33.7 . . 3 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
3415, 32, 33fnmptd 6710 . 2 (𝜑𝐷 Fn (1...𝑀))
3512adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
36 simpr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
3735, 36fvco3d 7009 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘((𝐵𝐴)‘𝑎)))
3811adantr 480 . . . . . 6 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐴:(1...𝑀)⟶(1...𝑀))
3938, 36fvco3d 7009 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐵𝐴)‘𝑎) = (𝐵‘(𝐴𝑎)))
4039fveq2d 6911 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘((𝐵𝐴)‘𝑎)) = (𝐶‘(𝐵‘(𝐴𝑎))))
4137, 40eqtrd 2775 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘(𝐵‘(𝐴𝑎))))
421adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
432adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
443adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
45 eqid 2735 . . . . 5 if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)
46 eqid 2735 . . . . 5 if(𝐼 ≤ (𝑎𝐼), 1, 0) = if(𝐼 ≤ (𝑎𝐼), 1, 0)
47 eqid 2735 . . . . 5 if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0))))
4842, 43, 44, 36, 10, 6, 4, 45, 46, 47metakunt31 42217 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
4942, 43, 44, 36, 33, 45, 46, 47metakunt32 42218 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐷𝑎) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
5049eqcomd 2741 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = (𝐷𝑎))
5148, 50eqtrd 2775 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = (𝐷𝑎))
5241, 51eqtrd 2775 . 2 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐷𝑎))
5314, 34, 52eqfnfvd 7054 1 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  ifcif 4531   class class class wbr 5148  cmpt 5231  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692
This theorem is referenced by:  metakunt34  42220
  Copyright terms: Public domain W3C validator