Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt33 Structured version   Visualization version   GIF version

Theorem metakunt33 39449
 Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt33.1 (𝜑𝑀 ∈ ℕ)
metakunt33.2 (𝜑𝐼 ∈ ℕ)
metakunt33.3 (𝜑𝐼𝑀)
metakunt33.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt33.5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt33.6 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt33.7 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt33 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Distinct variable groups:   𝑤,𝐼   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑤,𝑀   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝜑,𝑤   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem metakunt33
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 metakunt33.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
2 metakunt33.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
3 metakunt33.3 . . . . 5 (𝜑𝐼𝑀)
4 metakunt33.6 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
51, 2, 3, 4metakunt2 39418 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6 metakunt33.5 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
71, 2, 3, 6metakunt25 39441 . . . . . 6 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
8 f1of 6596 . . . . . 6 (𝐵:(1...𝑀)–1-1-onto→(1...𝑀) → 𝐵:(1...𝑀)⟶(1...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐵:(1...𝑀)⟶(1...𝑀))
10 metakunt33.4 . . . . . 6 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
111, 2, 3, 10metakunt1 39417 . . . . 5 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
129, 11fcod 6511 . . . 4 (𝜑 → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
135, 12fcod 6511 . . 3 (𝜑 → (𝐶 ∘ (𝐵𝐴)):(1...𝑀)⟶(1...𝑀))
1413ffnd 6493 . 2 (𝜑 → (𝐶 ∘ (𝐵𝐴)) Fn (1...𝑀))
15 nfv 1915 . . 3 𝑤𝜑
16 elfzelz 12919 . . . . 5 (𝑤 ∈ (1...𝑀) → 𝑤 ∈ ℤ)
1716adantl 485 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑤 ∈ ℤ)
181nnzd 12091 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1918adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
202nnzd 12091 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
2120adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
2219, 21zsubcld 12097 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑀𝐼) ∈ ℤ)
2317, 22zaddcld 12096 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤 + (𝑀𝐼)) ∈ ℤ)
24 1zzd 12018 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 1 ∈ ℤ)
25 0zd 11998 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 0 ∈ ℤ)
2624, 25ifcld 4472 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0) ∈ ℤ)
2723, 26zaddcld 12096 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)) ∈ ℤ)
2817, 21zsubcld 12097 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤𝐼) ∈ ℤ)
2924, 25ifcld 4472 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤𝐼), 1, 0) ∈ ℤ)
3028, 29zaddcld 12096 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)) ∈ ℤ)
3127, 30ifcld 4472 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0))) ∈ ℤ)
3217, 31ifcld 4472 . . 3 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))) ∈ ℤ)
33 metakunt33.7 . . 3 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
3415, 32, 33fnmptd 6466 . 2 (𝜑𝐷 Fn (1...𝑀))
3512adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
36 simpr 488 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
3735, 36fvco3d 6745 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘((𝐵𝐴)‘𝑎)))
3811adantr 484 . . . . . 6 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐴:(1...𝑀)⟶(1...𝑀))
3938, 36fvco3d 6745 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐵𝐴)‘𝑎) = (𝐵‘(𝐴𝑎)))
4039fveq2d 6656 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘((𝐵𝐴)‘𝑎)) = (𝐶‘(𝐵‘(𝐴𝑎))))
4137, 40eqtrd 2833 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘(𝐵‘(𝐴𝑎))))
421adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
432adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
443adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
45 eqid 2798 . . . . 5 if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)
46 eqid 2798 . . . . 5 if(𝐼 ≤ (𝑎𝐼), 1, 0) = if(𝐼 ≤ (𝑎𝐼), 1, 0)
47 eqid 2798 . . . . 5 if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0))))
4842, 43, 44, 36, 10, 6, 4, 45, 46, 47metakunt31 39447 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
4942, 43, 44, 36, 33, 45, 46, 47metakunt32 39448 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐷𝑎) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
5049eqcomd 2804 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = (𝐷𝑎))
5148, 50eqtrd 2833 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = (𝐷𝑎))
5241, 51eqtrd 2833 . 2 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐷𝑎))
5314, 34, 52eqfnfvd 6789 1 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ifcif 4427   class class class wbr 5033   ↦ cmpt 5113   ∘ ccom 5526  ⟶wf 6325  –1-1-onto→wf1o 6328  ‘cfv 6329  (class class class)co 7142  0cc0 10541  1c1 10542   + caddc 10544   < clt 10679   ≤ cle 10680   − cmin 10874  ℕcn 11640  ℤcz 11986  ...cfz 12902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-n0 11901  df-z 11987  df-uz 12249  df-rp 12395  df-fz 12903  df-fzo 13046 This theorem is referenced by:  metakunt34  39450
 Copyright terms: Public domain W3C validator