Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt33 Structured version   Visualization version   GIF version

Theorem metakunt33 39879
Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
Hypotheses
Ref Expression
metakunt33.1 (𝜑𝑀 ∈ ℕ)
metakunt33.2 (𝜑𝐼 ∈ ℕ)
metakunt33.3 (𝜑𝐼𝑀)
metakunt33.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt33.5 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
metakunt33.6 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt33.7 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
Assertion
Ref Expression
metakunt33 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Distinct variable groups:   𝑤,𝐼   𝑥,𝐼   𝑦,𝐼   𝑧,𝐼   𝑤,𝑀   𝑥,𝑀   𝑦,𝑀   𝑧,𝑀   𝜑,𝑤   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem metakunt33
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 metakunt33.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
2 metakunt33.2 . . . . 5 (𝜑𝐼 ∈ ℕ)
3 metakunt33.3 . . . . 5 (𝜑𝐼𝑀)
4 metakunt33.6 . . . . 5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
51, 2, 3, 4metakunt2 39848 . . . 4 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
6 metakunt33.5 . . . . . . 7 𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))
71, 2, 3, 6metakunt25 39871 . . . . . 6 (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
8 f1of 6661 . . . . . 6 (𝐵:(1...𝑀)–1-1-onto→(1...𝑀) → 𝐵:(1...𝑀)⟶(1...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐵:(1...𝑀)⟶(1...𝑀))
10 metakunt33.4 . . . . . 6 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
111, 2, 3, 10metakunt1 39847 . . . . 5 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
129, 11fcod 6571 . . . 4 (𝜑 → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
135, 12fcod 6571 . . 3 (𝜑 → (𝐶 ∘ (𝐵𝐴)):(1...𝑀)⟶(1...𝑀))
1413ffnd 6546 . 2 (𝜑 → (𝐶 ∘ (𝐵𝐴)) Fn (1...𝑀))
15 nfv 1922 . . 3 𝑤𝜑
16 elfzelz 13112 . . . . 5 (𝑤 ∈ (1...𝑀) → 𝑤 ∈ ℤ)
1716adantl 485 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑤 ∈ ℤ)
181nnzd 12281 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1918adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝑀 ∈ ℤ)
202nnzd 12281 . . . . . . . . 9 (𝜑𝐼 ∈ ℤ)
2120adantr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (1...𝑀)) → 𝐼 ∈ ℤ)
2219, 21zsubcld 12287 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑀𝐼) ∈ ℤ)
2317, 22zaddcld 12286 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤 + (𝑀𝐼)) ∈ ℤ)
24 1zzd 12208 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 1 ∈ ℤ)
25 0zd 12188 . . . . . . 7 ((𝜑𝑤 ∈ (1...𝑀)) → 0 ∈ ℤ)
2624, 25ifcld 4485 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0) ∈ ℤ)
2723, 26zaddcld 12286 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)) ∈ ℤ)
2817, 21zsubcld 12287 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → (𝑤𝐼) ∈ ℤ)
2924, 25ifcld 4485 . . . . . 6 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝐼 ≤ (𝑤𝐼), 1, 0) ∈ ℤ)
3028, 29zaddcld 12286 . . . . 5 ((𝜑𝑤 ∈ (1...𝑀)) → ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)) ∈ ℤ)
3127, 30ifcld 4485 . . . 4 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0))) ∈ ℤ)
3217, 31ifcld 4485 . . 3 ((𝜑𝑤 ∈ (1...𝑀)) → if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))) ∈ ℤ)
33 metakunt33.7 . . 3 𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))
3415, 32, 33fnmptd 6519 . 2 (𝜑𝐷 Fn (1...𝑀))
3512adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐵𝐴):(1...𝑀)⟶(1...𝑀))
36 simpr 488 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
3735, 36fvco3d 6811 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘((𝐵𝐴)‘𝑎)))
3811adantr 484 . . . . . 6 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐴:(1...𝑀)⟶(1...𝑀))
3938, 36fvco3d 6811 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐵𝐴)‘𝑎) = (𝐵‘(𝐴𝑎)))
4039fveq2d 6721 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘((𝐵𝐴)‘𝑎)) = (𝐶‘(𝐵‘(𝐴𝑎))))
4137, 40eqtrd 2777 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐶‘(𝐵‘(𝐴𝑎))))
421adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
432adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
443adantr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
45 eqid 2737 . . . . 5 if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0) = if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)
46 eqid 2737 . . . . 5 if(𝐼 ≤ (𝑎𝐼), 1, 0) = if(𝐼 ≤ (𝑎𝐼), 1, 0)
47 eqid 2737 . . . . 5 if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0))))
4842, 43, 44, 36, 10, 6, 4, 45, 46, 47metakunt31 39877 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
4942, 43, 44, 36, 33, 45, 46, 47metakunt32 39878 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐷𝑎) = if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))))
5049eqcomd 2743 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → if(𝑎 = 𝐼, 𝑎, if(𝑎 < 𝐼, ((𝑎 + (𝑀𝐼)) + if(𝐼 ≤ (𝑎 + (𝑀𝐼)), 1, 0)), ((𝑎𝐼) + if(𝐼 ≤ (𝑎𝐼), 1, 0)))) = (𝐷𝑎))
5148, 50eqtrd 2777 . . 3 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐵‘(𝐴𝑎))) = (𝐷𝑎))
5241, 51eqtrd 2777 . 2 ((𝜑𝑎 ∈ (1...𝑀)) → ((𝐶 ∘ (𝐵𝐴))‘𝑎) = (𝐷𝑎))
5314, 34, 52eqfnfvd 6855 1 (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  ifcif 4439   class class class wbr 5053  cmpt 5135  ccom 5555  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  cz 12176  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239
This theorem is referenced by:  metakunt34  39880
  Copyright terms: Public domain W3C validator