Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1o Structured version   Visualization version   GIF version

Theorem nsgqusf1o 33353
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1o (𝜑𝐸:𝑆1-1-onto𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1o
StepHypRef Expression
1 eqid 2729 . . . 4 ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇))
2 nsgqusf1o.s . . . . . 6 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
3 fvex 6835 . . . . . 6 (SubGrp‘𝐺) ∈ V
42, 3rabex2 5280 . . . . 5 𝑆 ∈ V
5 eqid 2729 . . . . . 6 (toInc‘𝑆) = (toInc‘𝑆)
65ipobas 18437 . . . . 5 (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆)))
74, 6ax-mp 5 . . . 4 𝑆 = (Base‘(toInc‘𝑆))
8 nsgqusf1o.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
98fvexi 6836 . . . . 5 𝑇 ∈ V
10 eqid 2729 . . . . . 6 (toInc‘𝑇) = (toInc‘𝑇)
1110ipobas 18437 . . . . 5 (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇)))
129, 11ax-mp 5 . . . 4 𝑇 = (Base‘(toInc‘𝑇))
13 nsgqusf1o.1 . . . 4 = (le‘(toInc‘𝑆))
14 nsgqusf1o.2 . . . 4 = (le‘(toInc‘𝑇))
155ipopos 18442 . . . . 5 (toInc‘𝑆) ∈ Poset
1615a1i 11 . . . 4 (𝜑 → (toInc‘𝑆) ∈ Poset)
1710ipopos 18442 . . . . 5 (toInc‘𝑇) ∈ Poset
1817a1i 11 . . . 4 (𝜑 → (toInc‘𝑇) ∈ Poset)
19 nsgqusf1o.b . . . . 5 𝐵 = (Base‘𝐺)
20 nsgqusf1o.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
21 nsgqusf1o.p . . . . 5 = (LSSum‘𝐺)
22 nsgqusf1o.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
23 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
24 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2519, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24nsgmgc 33349 . . . 4 (𝜑𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹)
261, 7, 12, 13, 14, 16, 18, 25mgcf1o 32945 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸))
27 isof1o 7260 . . 3 ((𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2826, 27syl 17 . 2 (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2919, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem3 33352 . . . . 5 (𝜑 → ran 𝐹 = 𝑆)
3029reseq2d 5930 . . . 4 (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸𝑆))
31 nfv 1914 . . . . . 6 𝜑
32 vex 3440 . . . . . . . . 9 ∈ V
3332mptex 7159 . . . . . . . 8 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3433rnex 7843 . . . . . . 7 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3534a1i 11 . . . . . 6 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
3631, 35, 22fnmptd 6623 . . . . 5 (𝜑𝐸 Fn 𝑆)
37 fnresdm 6601 . . . . 5 (𝐸 Fn 𝑆 → (𝐸𝑆) = 𝐸)
3836, 37syl 17 . . . 4 (𝜑 → (𝐸𝑆) = 𝐸)
3930, 38eqtrd 2764 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸)
4019, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem2 33351 . . 3 (𝜑 → ran 𝐸 = 𝑇)
4139, 29, 40f1oeq123d 6758 . 2 (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸𝐸:𝑆1-1-onto𝑇))
4228, 41mpbid 232 1 (𝜑𝐸:𝑆1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  wss 3903  {csn 4577  cmpt 5173  ran crn 5620  cres 5621   Fn wfn 6477  1-1-ontowf1o 6481  cfv 6482   Isom wiso 6483  (class class class)co 7349  Basecbs 17120  lecple 17168   /s cqus 17409  Posetcpo 18213  toInccipo 18433  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001  LSSumclsm 19513  MGalConncmgc 32921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-proset 18200  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-oppg 19225  df-lsm 19515  df-mnt 32922  df-mgc 32923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator