Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version |
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
Ref | Expression |
---|---|
nsgqusf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
nsgqusf1o.s | ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
nsgqusf1o.t | ⊢ 𝑇 = (SubGrp‘𝑄) |
nsgqusf1o.1 | ⊢ ≤ = (le‘(toInc‘𝑆)) |
nsgqusf1o.2 | ⊢ ≲ = (le‘(toInc‘𝑇)) |
nsgqusf1o.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
nsgqusf1o.p | ⊢ ⊕ = (LSSum‘𝐺) |
nsgqusf1o.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
nsgqusf1o.f | ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
nsgqusf1o.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
Ref | Expression |
---|---|
nsgqusf1o | ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇)) | |
2 | nsgqusf1o.s | . . . . . 6 ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | |
3 | fvex 6769 | . . . . . 6 ⊢ (SubGrp‘𝐺) ∈ V | |
4 | 2, 3 | rabex2 5253 | . . . . 5 ⊢ 𝑆 ∈ V |
5 | eqid 2738 | . . . . . 6 ⊢ (toInc‘𝑆) = (toInc‘𝑆) | |
6 | 5 | ipobas 18164 | . . . . 5 ⊢ (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆))) |
7 | 4, 6 | ax-mp 5 | . . . 4 ⊢ 𝑆 = (Base‘(toInc‘𝑆)) |
8 | nsgqusf1o.t | . . . . . 6 ⊢ 𝑇 = (SubGrp‘𝑄) | |
9 | 8 | fvexi 6770 | . . . . 5 ⊢ 𝑇 ∈ V |
10 | eqid 2738 | . . . . . 6 ⊢ (toInc‘𝑇) = (toInc‘𝑇) | |
11 | 10 | ipobas 18164 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇))) |
12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ 𝑇 = (Base‘(toInc‘𝑇)) |
13 | nsgqusf1o.1 | . . . 4 ⊢ ≤ = (le‘(toInc‘𝑆)) | |
14 | nsgqusf1o.2 | . . . 4 ⊢ ≲ = (le‘(toInc‘𝑇)) | |
15 | 5 | ipopos 18169 | . . . . 5 ⊢ (toInc‘𝑆) ∈ Poset |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑆) ∈ Poset) |
17 | 10 | ipopos 18169 | . . . . 5 ⊢ (toInc‘𝑇) ∈ Poset |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑇) ∈ Poset) |
19 | nsgqusf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
20 | nsgqusf1o.q | . . . . 5 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
21 | nsgqusf1o.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
22 | nsgqusf1o.e | . . . . 5 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
23 | nsgqusf1o.f | . . . . 5 ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | |
24 | nsgqusf1o.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 31499 | . . . 4 ⊢ (𝜑 → 𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹) |
26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 31183 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸)) |
27 | isof1o 7174 | . . 3 ⊢ ((𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) |
29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 31502 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = 𝑆) |
30 | 29 | reseq2d 5880 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸 ↾ 𝑆)) |
31 | nfv 1918 | . . . . . 6 ⊢ Ⅎℎ𝜑 | |
32 | vex 3426 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
33 | 32 | mptex 7081 | . . . . . . . 8 ⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
34 | 33 | rnex 7733 | . . . . . . 7 ⊢ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
36 | 31, 35, 22 | fnmptd 6558 | . . . . 5 ⊢ (𝜑 → 𝐸 Fn 𝑆) |
37 | fnresdm 6535 | . . . . 5 ⊢ (𝐸 Fn 𝑆 → (𝐸 ↾ 𝑆) = 𝐸) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ 𝑆) = 𝐸) |
39 | 30, 38 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸) |
40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 31501 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝑇) |
41 | 39, 29, 40 | f1oeq123d 6694 | . 2 ⊢ (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸 ↔ 𝐸:𝑆–1-1-onto→𝑇)) |
42 | 28, 41 | mpbid 231 | 1 ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 {csn 4558 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 Fn wfn 6413 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 (class class class)co 7255 Basecbs 16840 lecple 16895 /s cqus 17133 Posetcpo 17940 toInccipo 18160 SubGrpcsubg 18664 NrmSGrpcnsg 18665 ~QG cqg 18666 LSSumclsm 19154 MGalConncmgc 31159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ocomp 16909 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-proset 17928 df-poset 17946 df-ipo 18161 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-oppg 18865 df-lsm 19156 df-mnt 31160 df-mgc 31161 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |