![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version |
Description: The canonical projection homomorphism πΈ defines a bijective correspondence between the set π of subgroups of πΊ containing a normal subgroup π and the subgroups of the quotient group πΊ / π. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
Ref | Expression |
---|---|
nsgqusf1o.b | β’ π΅ = (BaseβπΊ) |
nsgqusf1o.s | β’ π = {β β (SubGrpβπΊ) β£ π β β} |
nsgqusf1o.t | β’ π = (SubGrpβπ) |
nsgqusf1o.1 | β’ β€ = (leβ(toIncβπ)) |
nsgqusf1o.2 | β’ β² = (leβ(toIncβπ)) |
nsgqusf1o.q | β’ π = (πΊ /s (πΊ ~QG π)) |
nsgqusf1o.p | β’ β = (LSSumβπΊ) |
nsgqusf1o.e | β’ πΈ = (β β π β¦ ran (π₯ β β β¦ ({π₯} β π))) |
nsgqusf1o.f | β’ πΉ = (π β π β¦ {π β π΅ β£ ({π} β π) β π}) |
nsgqusf1o.n | β’ (π β π β (NrmSGrpβπΊ)) |
Ref | Expression |
---|---|
nsgqusf1o | β’ (π β πΈ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ ((toIncβπ)MGalConn(toIncβπ)) = ((toIncβπ)MGalConn(toIncβπ)) | |
2 | nsgqusf1o.s | . . . . . 6 β’ π = {β β (SubGrpβπΊ) β£ π β β} | |
3 | fvex 6904 | . . . . . 6 β’ (SubGrpβπΊ) β V | |
4 | 2, 3 | rabex2 5334 | . . . . 5 β’ π β V |
5 | eqid 2732 | . . . . . 6 β’ (toIncβπ) = (toIncβπ) | |
6 | 5 | ipobas 18486 | . . . . 5 β’ (π β V β π = (Baseβ(toIncβπ))) |
7 | 4, 6 | ax-mp 5 | . . . 4 β’ π = (Baseβ(toIncβπ)) |
8 | nsgqusf1o.t | . . . . . 6 β’ π = (SubGrpβπ) | |
9 | 8 | fvexi 6905 | . . . . 5 β’ π β V |
10 | eqid 2732 | . . . . . 6 β’ (toIncβπ) = (toIncβπ) | |
11 | 10 | ipobas 18486 | . . . . 5 β’ (π β V β π = (Baseβ(toIncβπ))) |
12 | 9, 11 | ax-mp 5 | . . . 4 β’ π = (Baseβ(toIncβπ)) |
13 | nsgqusf1o.1 | . . . 4 β’ β€ = (leβ(toIncβπ)) | |
14 | nsgqusf1o.2 | . . . 4 β’ β² = (leβ(toIncβπ)) | |
15 | 5 | ipopos 18491 | . . . . 5 β’ (toIncβπ) β Poset |
16 | 15 | a1i 11 | . . . 4 β’ (π β (toIncβπ) β Poset) |
17 | 10 | ipopos 18491 | . . . . 5 β’ (toIncβπ) β Poset |
18 | 17 | a1i 11 | . . . 4 β’ (π β (toIncβπ) β Poset) |
19 | nsgqusf1o.b | . . . . 5 β’ π΅ = (BaseβπΊ) | |
20 | nsgqusf1o.q | . . . . 5 β’ π = (πΊ /s (πΊ ~QG π)) | |
21 | nsgqusf1o.p | . . . . 5 β’ β = (LSSumβπΊ) | |
22 | nsgqusf1o.e | . . . . 5 β’ πΈ = (β β π β¦ ran (π₯ β β β¦ ({π₯} β π))) | |
23 | nsgqusf1o.f | . . . . 5 β’ πΉ = (π β π β¦ {π β π΅ β£ ({π} β π) β π}) | |
24 | nsgqusf1o.n | . . . . 5 β’ (π β π β (NrmSGrpβπΊ)) | |
25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 32568 | . . . 4 β’ (π β πΈ((toIncβπ)MGalConn(toIncβπ))πΉ) |
26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 32211 | . . 3 β’ (π β (πΈ βΎ ran πΉ) Isom β€ , β² (ran πΉ, ran πΈ)) |
27 | isof1o 7322 | . . 3 β’ ((πΈ βΎ ran πΉ) Isom β€ , β² (ran πΉ, ran πΈ) β (πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ) | |
28 | 26, 27 | syl 17 | . 2 β’ (π β (πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ) |
29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 32571 | . . . . 5 β’ (π β ran πΉ = π) |
30 | 29 | reseq2d 5981 | . . . 4 β’ (π β (πΈ βΎ ran πΉ) = (πΈ βΎ π)) |
31 | nfv 1917 | . . . . . 6 β’ β²βπ | |
32 | vex 3478 | . . . . . . . . 9 β’ β β V | |
33 | 32 | mptex 7227 | . . . . . . . 8 β’ (π₯ β β β¦ ({π₯} β π)) β V |
34 | 33 | rnex 7905 | . . . . . . 7 β’ ran (π₯ β β β¦ ({π₯} β π)) β V |
35 | 34 | a1i 11 | . . . . . 6 β’ ((π β§ β β π) β ran (π₯ β β β¦ ({π₯} β π)) β V) |
36 | 31, 35, 22 | fnmptd 6691 | . . . . 5 β’ (π β πΈ Fn π) |
37 | fnresdm 6669 | . . . . 5 β’ (πΈ Fn π β (πΈ βΎ π) = πΈ) | |
38 | 36, 37 | syl 17 | . . . 4 β’ (π β (πΈ βΎ π) = πΈ) |
39 | 30, 38 | eqtrd 2772 | . . 3 β’ (π β (πΈ βΎ ran πΉ) = πΈ) |
40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 32570 | . . 3 β’ (π β ran πΈ = π) |
41 | 39, 29, 40 | f1oeq123d 6827 | . 2 β’ (π β ((πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ β πΈ:πβ1-1-ontoβπ)) |
42 | 28, 41 | mpbid 231 | 1 β’ (π β πΈ:πβ1-1-ontoβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3948 {csn 4628 β¦ cmpt 5231 ran crn 5677 βΎ cres 5678 Fn wfn 6538 β1-1-ontoβwf1o 6542 βcfv 6543 Isom wiso 6544 (class class class)co 7411 Basecbs 17146 lecple 17206 /s cqus 17453 Posetcpo 18262 toInccipo 18482 SubGrpcsubg 19002 NrmSGrpcnsg 19003 ~QG cqg 19004 LSSumclsm 19504 MGalConncmgc 32187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ocomp 17220 df-ds 17221 df-0g 17389 df-imas 17456 df-qus 17457 df-proset 18250 df-poset 18268 df-ipo 18483 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-submnd 18674 df-grp 18824 df-minusg 18825 df-subg 19005 df-nsg 19006 df-eqg 19007 df-ghm 19092 df-oppg 19212 df-lsm 19506 df-mnt 32188 df-mgc 32189 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |