![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version |
Description: The canonical projection homomorphism πΈ defines a bijective correspondence between the set π of subgroups of πΊ containing a normal subgroup π and the subgroups of the quotient group πΊ / π. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
Ref | Expression |
---|---|
nsgqusf1o.b | β’ π΅ = (BaseβπΊ) |
nsgqusf1o.s | β’ π = {β β (SubGrpβπΊ) β£ π β β} |
nsgqusf1o.t | β’ π = (SubGrpβπ) |
nsgqusf1o.1 | β’ β€ = (leβ(toIncβπ)) |
nsgqusf1o.2 | β’ β² = (leβ(toIncβπ)) |
nsgqusf1o.q | β’ π = (πΊ /s (πΊ ~QG π)) |
nsgqusf1o.p | β’ β = (LSSumβπΊ) |
nsgqusf1o.e | β’ πΈ = (β β π β¦ ran (π₯ β β β¦ ({π₯} β π))) |
nsgqusf1o.f | β’ πΉ = (π β π β¦ {π β π΅ β£ ({π} β π) β π}) |
nsgqusf1o.n | β’ (π β π β (NrmSGrpβπΊ)) |
Ref | Expression |
---|---|
nsgqusf1o | β’ (π β πΈ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ ((toIncβπ)MGalConn(toIncβπ)) = ((toIncβπ)MGalConn(toIncβπ)) | |
2 | nsgqusf1o.s | . . . . . 6 β’ π = {β β (SubGrpβπΊ) β£ π β β} | |
3 | fvex 6901 | . . . . . 6 β’ (SubGrpβπΊ) β V | |
4 | 2, 3 | rabex2 5333 | . . . . 5 β’ π β V |
5 | eqid 2732 | . . . . . 6 β’ (toIncβπ) = (toIncβπ) | |
6 | 5 | ipobas 18480 | . . . . 5 β’ (π β V β π = (Baseβ(toIncβπ))) |
7 | 4, 6 | ax-mp 5 | . . . 4 β’ π = (Baseβ(toIncβπ)) |
8 | nsgqusf1o.t | . . . . . 6 β’ π = (SubGrpβπ) | |
9 | 8 | fvexi 6902 | . . . . 5 β’ π β V |
10 | eqid 2732 | . . . . . 6 β’ (toIncβπ) = (toIncβπ) | |
11 | 10 | ipobas 18480 | . . . . 5 β’ (π β V β π = (Baseβ(toIncβπ))) |
12 | 9, 11 | ax-mp 5 | . . . 4 β’ π = (Baseβ(toIncβπ)) |
13 | nsgqusf1o.1 | . . . 4 β’ β€ = (leβ(toIncβπ)) | |
14 | nsgqusf1o.2 | . . . 4 β’ β² = (leβ(toIncβπ)) | |
15 | 5 | ipopos 18485 | . . . . 5 β’ (toIncβπ) β Poset |
16 | 15 | a1i 11 | . . . 4 β’ (π β (toIncβπ) β Poset) |
17 | 10 | ipopos 18485 | . . . . 5 β’ (toIncβπ) β Poset |
18 | 17 | a1i 11 | . . . 4 β’ (π β (toIncβπ) β Poset) |
19 | nsgqusf1o.b | . . . . 5 β’ π΅ = (BaseβπΊ) | |
20 | nsgqusf1o.q | . . . . 5 β’ π = (πΊ /s (πΊ ~QG π)) | |
21 | nsgqusf1o.p | . . . . 5 β’ β = (LSSumβπΊ) | |
22 | nsgqusf1o.e | . . . . 5 β’ πΈ = (β β π β¦ ran (π₯ β β β¦ ({π₯} β π))) | |
23 | nsgqusf1o.f | . . . . 5 β’ πΉ = (π β π β¦ {π β π΅ β£ ({π} β π) β π}) | |
24 | nsgqusf1o.n | . . . . 5 β’ (π β π β (NrmSGrpβπΊ)) | |
25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 32511 | . . . 4 β’ (π β πΈ((toIncβπ)MGalConn(toIncβπ))πΉ) |
26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 32160 | . . 3 β’ (π β (πΈ βΎ ran πΉ) Isom β€ , β² (ran πΉ, ran πΈ)) |
27 | isof1o 7316 | . . 3 β’ ((πΈ βΎ ran πΉ) Isom β€ , β² (ran πΉ, ran πΈ) β (πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ) | |
28 | 26, 27 | syl 17 | . 2 β’ (π β (πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ) |
29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 32514 | . . . . 5 β’ (π β ran πΉ = π) |
30 | 29 | reseq2d 5979 | . . . 4 β’ (π β (πΈ βΎ ran πΉ) = (πΈ βΎ π)) |
31 | nfv 1917 | . . . . . 6 β’ β²βπ | |
32 | vex 3478 | . . . . . . . . 9 β’ β β V | |
33 | 32 | mptex 7221 | . . . . . . . 8 β’ (π₯ β β β¦ ({π₯} β π)) β V |
34 | 33 | rnex 7899 | . . . . . . 7 β’ ran (π₯ β β β¦ ({π₯} β π)) β V |
35 | 34 | a1i 11 | . . . . . 6 β’ ((π β§ β β π) β ran (π₯ β β β¦ ({π₯} β π)) β V) |
36 | 31, 35, 22 | fnmptd 6688 | . . . . 5 β’ (π β πΈ Fn π) |
37 | fnresdm 6666 | . . . . 5 β’ (πΈ Fn π β (πΈ βΎ π) = πΈ) | |
38 | 36, 37 | syl 17 | . . . 4 β’ (π β (πΈ βΎ π) = πΈ) |
39 | 30, 38 | eqtrd 2772 | . . 3 β’ (π β (πΈ βΎ ran πΉ) = πΈ) |
40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 32513 | . . 3 β’ (π β ran πΈ = π) |
41 | 39, 29, 40 | f1oeq123d 6824 | . 2 β’ (π β ((πΈ βΎ ran πΉ):ran πΉβ1-1-ontoβran πΈ β πΈ:πβ1-1-ontoβπ)) |
42 | 28, 41 | mpbid 231 | 1 β’ (π β πΈ:πβ1-1-ontoβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3947 {csn 4627 β¦ cmpt 5230 ran crn 5676 βΎ cres 5677 Fn wfn 6535 β1-1-ontoβwf1o 6539 βcfv 6540 Isom wiso 6541 (class class class)co 7405 Basecbs 17140 lecple 17200 /s cqus 17447 Posetcpo 18256 toInccipo 18476 SubGrpcsubg 18994 NrmSGrpcnsg 18995 ~QG cqg 18996 LSSumclsm 19496 MGalConncmgc 32136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ocomp 17214 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-proset 18244 df-poset 18262 df-ipo 18477 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-oppg 19204 df-lsm 19498 df-mnt 32137 df-mgc 32138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |