Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1o Structured version   Visualization version   GIF version

Theorem nsgqusf1o 33445
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1o (𝜑𝐸:𝑆1-1-onto𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1o
StepHypRef Expression
1 eqid 2736 . . . 4 ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇))
2 nsgqusf1o.s . . . . . 6 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
3 fvex 6918 . . . . . 6 (SubGrp‘𝐺) ∈ V
42, 3rabex2 5340 . . . . 5 𝑆 ∈ V
5 eqid 2736 . . . . . 6 (toInc‘𝑆) = (toInc‘𝑆)
65ipobas 18577 . . . . 5 (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆)))
74, 6ax-mp 5 . . . 4 𝑆 = (Base‘(toInc‘𝑆))
8 nsgqusf1o.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
98fvexi 6919 . . . . 5 𝑇 ∈ V
10 eqid 2736 . . . . . 6 (toInc‘𝑇) = (toInc‘𝑇)
1110ipobas 18577 . . . . 5 (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇)))
129, 11ax-mp 5 . . . 4 𝑇 = (Base‘(toInc‘𝑇))
13 nsgqusf1o.1 . . . 4 = (le‘(toInc‘𝑆))
14 nsgqusf1o.2 . . . 4 = (le‘(toInc‘𝑇))
155ipopos 18582 . . . . 5 (toInc‘𝑆) ∈ Poset
1615a1i 11 . . . 4 (𝜑 → (toInc‘𝑆) ∈ Poset)
1710ipopos 18582 . . . . 5 (toInc‘𝑇) ∈ Poset
1817a1i 11 . . . 4 (𝜑 → (toInc‘𝑇) ∈ Poset)
19 nsgqusf1o.b . . . . 5 𝐵 = (Base‘𝐺)
20 nsgqusf1o.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
21 nsgqusf1o.p . . . . 5 = (LSSum‘𝐺)
22 nsgqusf1o.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
23 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
24 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2519, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24nsgmgc 33441 . . . 4 (𝜑𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹)
261, 7, 12, 13, 14, 16, 18, 25mgcf1o 32994 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸))
27 isof1o 7344 . . 3 ((𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2826, 27syl 17 . 2 (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2919, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem3 33444 . . . . 5 (𝜑 → ran 𝐹 = 𝑆)
3029reseq2d 5996 . . . 4 (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸𝑆))
31 nfv 1913 . . . . . 6 𝜑
32 vex 3483 . . . . . . . . 9 ∈ V
3332mptex 7244 . . . . . . . 8 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3433rnex 7933 . . . . . . 7 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3534a1i 11 . . . . . 6 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
3631, 35, 22fnmptd 6708 . . . . 5 (𝜑𝐸 Fn 𝑆)
37 fnresdm 6686 . . . . 5 (𝐸 Fn 𝑆 → (𝐸𝑆) = 𝐸)
3836, 37syl 17 . . . 4 (𝜑 → (𝐸𝑆) = 𝐸)
3930, 38eqtrd 2776 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸)
4019, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem2 33443 . . 3 (𝜑 → ran 𝐸 = 𝑇)
4139, 29, 40f1oeq123d 6841 . 2 (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸𝐸:𝑆1-1-onto𝑇))
4228, 41mpbid 232 1 (𝜑𝐸:𝑆1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  wss 3950  {csn 4625  cmpt 5224  ran crn 5685  cres 5686   Fn wfn 6555  1-1-ontowf1o 6559  cfv 6560   Isom wiso 6561  (class class class)co 7432  Basecbs 17248  lecple 17305   /s cqus 17551  Posetcpo 18354  toInccipo 18573  SubGrpcsubg 19139  NrmSGrpcnsg 19140   ~QG cqg 19141  LSSumclsm 19653  MGalConncmgc 32970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ocomp 17319  df-ds 17320  df-0g 17487  df-imas 17554  df-qus 17555  df-proset 18341  df-poset 18360  df-ipo 18574  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-oppg 19365  df-lsm 19655  df-mnt 32971  df-mgc 32972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator