| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version | ||
| Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
| Ref | Expression |
|---|---|
| nsgqusf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
| nsgqusf1o.s | ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
| nsgqusf1o.t | ⊢ 𝑇 = (SubGrp‘𝑄) |
| nsgqusf1o.1 | ⊢ ≤ = (le‘(toInc‘𝑆)) |
| nsgqusf1o.2 | ⊢ ≲ = (le‘(toInc‘𝑇)) |
| nsgqusf1o.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| nsgqusf1o.p | ⊢ ⊕ = (LSSum‘𝐺) |
| nsgqusf1o.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
| nsgqusf1o.f | ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
| nsgqusf1o.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| nsgqusf1o | ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇)) | |
| 2 | nsgqusf1o.s | . . . . . 6 ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | |
| 3 | fvex 6835 | . . . . . 6 ⊢ (SubGrp‘𝐺) ∈ V | |
| 4 | 2, 3 | rabex2 5277 | . . . . 5 ⊢ 𝑆 ∈ V |
| 5 | eqid 2731 | . . . . . 6 ⊢ (toInc‘𝑆) = (toInc‘𝑆) | |
| 6 | 5 | ipobas 18437 | . . . . 5 ⊢ (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆))) |
| 7 | 4, 6 | ax-mp 5 | . . . 4 ⊢ 𝑆 = (Base‘(toInc‘𝑆)) |
| 8 | nsgqusf1o.t | . . . . . 6 ⊢ 𝑇 = (SubGrp‘𝑄) | |
| 9 | 8 | fvexi 6836 | . . . . 5 ⊢ 𝑇 ∈ V |
| 10 | eqid 2731 | . . . . . 6 ⊢ (toInc‘𝑇) = (toInc‘𝑇) | |
| 11 | 10 | ipobas 18437 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇))) |
| 12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ 𝑇 = (Base‘(toInc‘𝑇)) |
| 13 | nsgqusf1o.1 | . . . 4 ⊢ ≤ = (le‘(toInc‘𝑆)) | |
| 14 | nsgqusf1o.2 | . . . 4 ⊢ ≲ = (le‘(toInc‘𝑇)) | |
| 15 | 5 | ipopos 18442 | . . . . 5 ⊢ (toInc‘𝑆) ∈ Poset |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑆) ∈ Poset) |
| 17 | 10 | ipopos 18442 | . . . . 5 ⊢ (toInc‘𝑇) ∈ Poset |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑇) ∈ Poset) |
| 19 | nsgqusf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | nsgqusf1o.q | . . . . 5 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
| 21 | nsgqusf1o.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 22 | nsgqusf1o.e | . . . . 5 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
| 23 | nsgqusf1o.f | . . . . 5 ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | |
| 24 | nsgqusf1o.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 33377 | . . . 4 ⊢ (𝜑 → 𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹) |
| 26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 32984 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸)) |
| 27 | isof1o 7257 | . . 3 ⊢ ((𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) | |
| 28 | 26, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) |
| 29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 33380 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = 𝑆) |
| 30 | 29 | reseq2d 5927 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸 ↾ 𝑆)) |
| 31 | nfv 1915 | . . . . . 6 ⊢ Ⅎℎ𝜑 | |
| 32 | vex 3440 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
| 33 | 32 | mptex 7157 | . . . . . . . 8 ⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
| 34 | 33 | rnex 7840 | . . . . . . 7 ⊢ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
| 36 | 31, 35, 22 | fnmptd 6622 | . . . . 5 ⊢ (𝜑 → 𝐸 Fn 𝑆) |
| 37 | fnresdm 6600 | . . . . 5 ⊢ (𝐸 Fn 𝑆 → (𝐸 ↾ 𝑆) = 𝐸) | |
| 38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ 𝑆) = 𝐸) |
| 39 | 30, 38 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸) |
| 40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 33379 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝑇) |
| 41 | 39, 29, 40 | f1oeq123d 6757 | . 2 ⊢ (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸 ↔ 𝐸:𝑆–1-1-onto→𝑇)) |
| 42 | 28, 41 | mpbid 232 | 1 ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 {csn 4573 ↦ cmpt 5170 ran crn 5615 ↾ cres 5616 Fn wfn 6476 –1-1-onto→wf1o 6480 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 Basecbs 17120 lecple 17168 /s cqus 17409 Posetcpo 18213 toInccipo 18433 SubGrpcsubg 19033 NrmSGrpcnsg 19034 ~QG cqg 19035 LSSumclsm 19546 MGalConncmgc 32960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ocomp 17182 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-proset 18200 df-poset 18219 df-ipo 18434 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-oppg 19258 df-lsm 19548 df-mnt 32961 df-mgc 32962 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |