Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version |
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
Ref | Expression |
---|---|
nsgqusf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
nsgqusf1o.s | ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
nsgqusf1o.t | ⊢ 𝑇 = (SubGrp‘𝑄) |
nsgqusf1o.1 | ⊢ ≤ = (le‘(toInc‘𝑆)) |
nsgqusf1o.2 | ⊢ ≲ = (le‘(toInc‘𝑇)) |
nsgqusf1o.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
nsgqusf1o.p | ⊢ ⊕ = (LSSum‘𝐺) |
nsgqusf1o.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
nsgqusf1o.f | ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
nsgqusf1o.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
Ref | Expression |
---|---|
nsgqusf1o | ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇)) | |
2 | nsgqusf1o.s | . . . . . 6 ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | |
3 | fvex 6675 | . . . . . 6 ⊢ (SubGrp‘𝐺) ∈ V | |
4 | 2, 3 | rabex2 5207 | . . . . 5 ⊢ 𝑆 ∈ V |
5 | eqid 2758 | . . . . . 6 ⊢ (toInc‘𝑆) = (toInc‘𝑆) | |
6 | 5 | ipobas 17836 | . . . . 5 ⊢ (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆))) |
7 | 4, 6 | ax-mp 5 | . . . 4 ⊢ 𝑆 = (Base‘(toInc‘𝑆)) |
8 | nsgqusf1o.t | . . . . . 6 ⊢ 𝑇 = (SubGrp‘𝑄) | |
9 | 8 | fvexi 6676 | . . . . 5 ⊢ 𝑇 ∈ V |
10 | eqid 2758 | . . . . . 6 ⊢ (toInc‘𝑇) = (toInc‘𝑇) | |
11 | 10 | ipobas 17836 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇))) |
12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ 𝑇 = (Base‘(toInc‘𝑇)) |
13 | nsgqusf1o.1 | . . . 4 ⊢ ≤ = (le‘(toInc‘𝑆)) | |
14 | nsgqusf1o.2 | . . . 4 ⊢ ≲ = (le‘(toInc‘𝑇)) | |
15 | 5 | ipopos 17841 | . . . . 5 ⊢ (toInc‘𝑆) ∈ Poset |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑆) ∈ Poset) |
17 | 10 | ipopos 17841 | . . . . 5 ⊢ (toInc‘𝑇) ∈ Poset |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑇) ∈ Poset) |
19 | nsgqusf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
20 | nsgqusf1o.q | . . . . 5 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
21 | nsgqusf1o.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
22 | nsgqusf1o.e | . . . . 5 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
23 | nsgqusf1o.f | . . . . 5 ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | |
24 | nsgqusf1o.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 31122 | . . . 4 ⊢ (𝜑 → 𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹) |
26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 30811 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸)) |
27 | isof1o 7075 | . . 3 ⊢ ((𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) |
29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 31125 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = 𝑆) |
30 | 29 | reseq2d 5827 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸 ↾ 𝑆)) |
31 | nfv 1915 | . . . . . 6 ⊢ Ⅎℎ𝜑 | |
32 | vex 3413 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
33 | 32 | mptex 6982 | . . . . . . . 8 ⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
34 | 33 | rnex 7627 | . . . . . . 7 ⊢ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
36 | 31, 35, 22 | fnmptd 6476 | . . . . 5 ⊢ (𝜑 → 𝐸 Fn 𝑆) |
37 | fnresdm 6453 | . . . . 5 ⊢ (𝐸 Fn 𝑆 → (𝐸 ↾ 𝑆) = 𝐸) | |
38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ 𝑆) = 𝐸) |
39 | 30, 38 | eqtrd 2793 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸) |
40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 31124 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝑇) |
41 | 39, 29, 40 | f1oeq123d 6600 | . 2 ⊢ (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸 ↔ 𝐸:𝑆–1-1-onto→𝑇)) |
42 | 28, 41 | mpbid 235 | 1 ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ⊆ wss 3860 {csn 4525 ↦ cmpt 5115 ran crn 5528 ↾ cres 5529 Fn wfn 6334 –1-1-onto→wf1o 6338 ‘cfv 6339 Isom wiso 6340 (class class class)co 7155 Basecbs 16546 lecple 16635 /s cqus 16841 Posetcpo 17621 toInccipo 17832 SubGrpcsubg 18345 NrmSGrpcnsg 18346 ~QG cqg 18347 LSSumclsm 18831 MGalConncmgc 30787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-ec 8306 df-qs 8310 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ocomp 16649 df-ds 16650 df-0g 16778 df-imas 16844 df-qus 16845 df-proset 17609 df-poset 17627 df-ipo 17833 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-grp 18177 df-minusg 18178 df-subg 18348 df-nsg 18349 df-eqg 18350 df-ghm 18428 df-oppg 18546 df-lsm 18833 df-mnt 30788 df-mgc 30789 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |