| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqusf1o | Structured version Visualization version GIF version | ||
| Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.) |
| Ref | Expression |
|---|---|
| nsgqusf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
| nsgqusf1o.s | ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
| nsgqusf1o.t | ⊢ 𝑇 = (SubGrp‘𝑄) |
| nsgqusf1o.1 | ⊢ ≤ = (le‘(toInc‘𝑆)) |
| nsgqusf1o.2 | ⊢ ≲ = (le‘(toInc‘𝑇)) |
| nsgqusf1o.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| nsgqusf1o.p | ⊢ ⊕ = (LSSum‘𝐺) |
| nsgqusf1o.e | ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
| nsgqusf1o.f | ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
| nsgqusf1o.n | ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| nsgqusf1o | ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇)) | |
| 2 | nsgqusf1o.s | . . . . . 6 ⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | |
| 3 | fvex 6853 | . . . . . 6 ⊢ (SubGrp‘𝐺) ∈ V | |
| 4 | 2, 3 | rabex2 5291 | . . . . 5 ⊢ 𝑆 ∈ V |
| 5 | eqid 2729 | . . . . . 6 ⊢ (toInc‘𝑆) = (toInc‘𝑆) | |
| 6 | 5 | ipobas 18466 | . . . . 5 ⊢ (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆))) |
| 7 | 4, 6 | ax-mp 5 | . . . 4 ⊢ 𝑆 = (Base‘(toInc‘𝑆)) |
| 8 | nsgqusf1o.t | . . . . . 6 ⊢ 𝑇 = (SubGrp‘𝑄) | |
| 9 | 8 | fvexi 6854 | . . . . 5 ⊢ 𝑇 ∈ V |
| 10 | eqid 2729 | . . . . . 6 ⊢ (toInc‘𝑇) = (toInc‘𝑇) | |
| 11 | 10 | ipobas 18466 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇))) |
| 12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ 𝑇 = (Base‘(toInc‘𝑇)) |
| 13 | nsgqusf1o.1 | . . . 4 ⊢ ≤ = (le‘(toInc‘𝑆)) | |
| 14 | nsgqusf1o.2 | . . . 4 ⊢ ≲ = (le‘(toInc‘𝑇)) | |
| 15 | 5 | ipopos 18471 | . . . . 5 ⊢ (toInc‘𝑆) ∈ Poset |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑆) ∈ Poset) |
| 17 | 10 | ipopos 18471 | . . . . 5 ⊢ (toInc‘𝑇) ∈ Poset |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → (toInc‘𝑇) ∈ Poset) |
| 19 | nsgqusf1o.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 20 | nsgqusf1o.q | . . . . 5 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
| 21 | nsgqusf1o.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 22 | nsgqusf1o.e | . . . . 5 ⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | |
| 23 | nsgqusf1o.f | . . . . 5 ⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | |
| 24 | nsgqusf1o.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
| 25 | 19, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24 | nsgmgc 33356 | . . . 4 ⊢ (𝜑 → 𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹) |
| 26 | 1, 7, 12, 13, 14, 16, 18, 25 | mgcf1o 32902 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸)) |
| 27 | isof1o 7280 | . . 3 ⊢ ((𝐸 ↾ ran 𝐹) Isom ≤ , ≲ (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) | |
| 28 | 26, 27 | syl 17 | . 2 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸) |
| 29 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem3 33359 | . . . . 5 ⊢ (𝜑 → ran 𝐹 = 𝑆) |
| 30 | 29 | reseq2d 5939 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸 ↾ 𝑆)) |
| 31 | nfv 1914 | . . . . . 6 ⊢ Ⅎℎ𝜑 | |
| 32 | vex 3448 | . . . . . . . . 9 ⊢ ℎ ∈ V | |
| 33 | 32 | mptex 7179 | . . . . . . . 8 ⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
| 34 | 33 | rnex 7866 | . . . . . . 7 ⊢ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
| 36 | 31, 35, 22 | fnmptd 6641 | . . . . 5 ⊢ (𝜑 → 𝐸 Fn 𝑆) |
| 37 | fnresdm 6619 | . . . . 5 ⊢ (𝐸 Fn 𝑆 → (𝐸 ↾ 𝑆) = 𝐸) | |
| 38 | 36, 37 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ↾ 𝑆) = 𝐸) |
| 39 | 30, 38 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸) |
| 40 | 19, 2, 8, 13, 14, 20, 21, 22, 23, 24 | nsgqusf1olem2 33358 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝑇) |
| 41 | 39, 29, 40 | f1oeq123d 6776 | . 2 ⊢ (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹–1-1-onto→ran 𝐸 ↔ 𝐸:𝑆–1-1-onto→𝑇)) |
| 42 | 28, 41 | mpbid 232 | 1 ⊢ (𝜑 → 𝐸:𝑆–1-1-onto→𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 ran crn 5632 ↾ cres 5633 Fn wfn 6494 –1-1-onto→wf1o 6498 ‘cfv 6499 Isom wiso 6500 (class class class)co 7369 Basecbs 17155 lecple 17203 /s cqus 17444 Posetcpo 18244 toInccipo 18462 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 LSSumclsm 19540 MGalConncmgc 32878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ds 17218 df-0g 17380 df-imas 17447 df-qus 17448 df-proset 18231 df-poset 18250 df-ipo 18463 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19121 df-oppg 19254 df-lsm 19542 df-mnt 32879 df-mgc 32880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |