Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1o Structured version   Visualization version   GIF version

Theorem nsgqusf1o 32516
Description: The canonical projection homomorphism 𝐸 defines a bijective correspondence between the set 𝑆 of subgroups of 𝐺 containing a normal subgroup 𝑁 and the subgroups of the quotient group 𝐺 / 𝑁. This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1o (𝜑𝐸:𝑆1-1-onto𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1o
StepHypRef Expression
1 eqid 2733 . . . 4 ((toInc‘𝑆)MGalConn(toInc‘𝑇)) = ((toInc‘𝑆)MGalConn(toInc‘𝑇))
2 nsgqusf1o.s . . . . . 6 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
3 fvex 6902 . . . . . 6 (SubGrp‘𝐺) ∈ V
42, 3rabex2 5334 . . . . 5 𝑆 ∈ V
5 eqid 2733 . . . . . 6 (toInc‘𝑆) = (toInc‘𝑆)
65ipobas 18481 . . . . 5 (𝑆 ∈ V → 𝑆 = (Base‘(toInc‘𝑆)))
74, 6ax-mp 5 . . . 4 𝑆 = (Base‘(toInc‘𝑆))
8 nsgqusf1o.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
98fvexi 6903 . . . . 5 𝑇 ∈ V
10 eqid 2733 . . . . . 6 (toInc‘𝑇) = (toInc‘𝑇)
1110ipobas 18481 . . . . 5 (𝑇 ∈ V → 𝑇 = (Base‘(toInc‘𝑇)))
129, 11ax-mp 5 . . . 4 𝑇 = (Base‘(toInc‘𝑇))
13 nsgqusf1o.1 . . . 4 = (le‘(toInc‘𝑆))
14 nsgqusf1o.2 . . . 4 = (le‘(toInc‘𝑇))
155ipopos 18486 . . . . 5 (toInc‘𝑆) ∈ Poset
1615a1i 11 . . . 4 (𝜑 → (toInc‘𝑆) ∈ Poset)
1710ipopos 18486 . . . . 5 (toInc‘𝑇) ∈ Poset
1817a1i 11 . . . 4 (𝜑 → (toInc‘𝑇) ∈ Poset)
19 nsgqusf1o.b . . . . 5 𝐵 = (Base‘𝐺)
20 nsgqusf1o.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
21 nsgqusf1o.p . . . . 5 = (LSSum‘𝐺)
22 nsgqusf1o.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
23 nsgqusf1o.f . . . . 5 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
24 nsgqusf1o.n . . . . 5 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
2519, 2, 8, 1, 5, 10, 20, 21, 22, 23, 24nsgmgc 32512 . . . 4 (𝜑𝐸((toInc‘𝑆)MGalConn(toInc‘𝑇))𝐹)
261, 7, 12, 13, 14, 16, 18, 25mgcf1o 32161 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸))
27 isof1o 7317 . . 3 ((𝐸 ↾ ran 𝐹) Isom , (ran 𝐹, ran 𝐸) → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2826, 27syl 17 . 2 (𝜑 → (𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸)
2919, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem3 32515 . . . . 5 (𝜑 → ran 𝐹 = 𝑆)
3029reseq2d 5980 . . . 4 (𝜑 → (𝐸 ↾ ran 𝐹) = (𝐸𝑆))
31 nfv 1918 . . . . . 6 𝜑
32 vex 3479 . . . . . . . . 9 ∈ V
3332mptex 7222 . . . . . . . 8 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3433rnex 7900 . . . . . . 7 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
3534a1i 11 . . . . . 6 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
3631, 35, 22fnmptd 6689 . . . . 5 (𝜑𝐸 Fn 𝑆)
37 fnresdm 6667 . . . . 5 (𝐸 Fn 𝑆 → (𝐸𝑆) = 𝐸)
3836, 37syl 17 . . . 4 (𝜑 → (𝐸𝑆) = 𝐸)
3930, 38eqtrd 2773 . . 3 (𝜑 → (𝐸 ↾ ran 𝐹) = 𝐸)
4019, 2, 8, 13, 14, 20, 21, 22, 23, 24nsgqusf1olem2 32514 . . 3 (𝜑 → ran 𝐸 = 𝑇)
4139, 29, 40f1oeq123d 6825 . 2 (𝜑 → ((𝐸 ↾ ran 𝐹):ran 𝐹1-1-onto→ran 𝐸𝐸:𝑆1-1-onto𝑇))
4228, 41mpbid 231 1 (𝜑𝐸:𝑆1-1-onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  wss 3948  {csn 4628  cmpt 5231  ran crn 5677  cres 5678   Fn wfn 6536  1-1-ontowf1o 6540  cfv 6541   Isom wiso 6542  (class class class)co 7406  Basecbs 17141  lecple 17201   /s cqus 17448  Posetcpo 18257  toInccipo 18477  SubGrpcsubg 18995  NrmSGrpcnsg 18996   ~QG cqg 18997  LSSumclsm 19497  MGalConncmgc 32137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-ec 8702  df-qs 8706  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-sca 17210  df-vsca 17211  df-ip 17212  df-tset 17213  df-ple 17214  df-ocomp 17215  df-ds 17216  df-0g 17384  df-imas 17451  df-qus 17452  df-proset 18245  df-poset 18263  df-ipo 18478  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-grp 18819  df-minusg 18820  df-subg 18998  df-nsg 18999  df-eqg 19000  df-ghm 19085  df-oppg 19205  df-lsm 19499  df-mnt 32138  df-mgc 32139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator