Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5b Structured version   Visualization version   GIF version

Theorem dfafn5b 44144
Description: Representation of a function in terms of its values, analogous to dffn5 6717 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5b (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dfafn5b
StepHypRef Expression
1 dfafn5a 44143 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
2 eqid 2758 . . . 4 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
32fnmpt 6476 . . 3 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)
4 fneq1 6430 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴))
53, 4syl5ibrcom 250 . 2 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴))
61, 5impbid2 229 1 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3070  cmpt 5116   Fn wfn 6335  '''cafv 44100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4842  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-iota 6299  df-fun 6342  df-fn 6343  df-fv 6348  df-aiota 44067  df-dfat 44102  df-afv 44103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator