|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5b | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values, analogous to dffn5 6966 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.) | 
| Ref | Expression | 
|---|---|
| dfafn5b | ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfafn5a 47177 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | |
| 2 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) | |
| 3 | 2 | fnmpt 6707 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴) | 
| 4 | fneq1 6658 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)) | |
| 5 | 3, 4 | syl5ibrcom 247 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴)) | 
| 6 | 1, 5 | impbid2 226 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ↦ cmpt 5224 Fn wfn 6555 '''cafv 47134 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-aiota 47102 df-dfat 47136 df-afv 47137 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |