Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5b Structured version   Visualization version   GIF version

Theorem dfafn5b 47111
Description: Representation of a function in terms of its values, analogous to dffn5 6967 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5b (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dfafn5b
StepHypRef Expression
1 dfafn5a 47110 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
2 eqid 2735 . . . 4 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
32fnmpt 6709 . . 3 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)
4 fneq1 6660 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴))
53, 4syl5ibrcom 247 . 2 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴))
61, 5impbid2 226 1 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wral 3059  cmpt 5231   Fn wfn 6558  '''cafv 47067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator