Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5b | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values, analogous to dffn5 6717 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfafn5b | ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafn5a 44143 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | |
2 | eqid 2758 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) | |
3 | 2 | fnmpt 6476 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴) |
4 | fneq1 6430 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)) | |
5 | 3, 4 | syl5ibrcom 250 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴)) |
6 | 1, 5 | impbid2 229 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ↦ cmpt 5116 Fn wfn 6335 '''cafv 44100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-res 5540 df-iota 6299 df-fun 6342 df-fn 6343 df-fv 6348 df-aiota 44067 df-dfat 44102 df-afv 44103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |