Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5b Structured version   Visualization version   GIF version

Theorem dfafn5b 43228
Description: Representation of a function in terms of its values, analogous to dffn5 6720 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5b (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dfafn5b
StepHypRef Expression
1 dfafn5a 43227 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
2 eqid 2825 . . . 4 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
32fnmpt 6484 . . 3 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)
4 fneq1 6440 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴))
53, 4syl5ibrcom 248 . 2 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴))
61, 5impbid2 227 1 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1530  wcel 2107  wral 3142  cmpt 5142   Fn wfn 6346  '''cafv 43184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-int 4874  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-res 5565  df-iota 6311  df-fun 6353  df-fn 6354  df-fv 6359  df-aiota 43153  df-dfat 43186  df-afv 43187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator