| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5b | Structured version Visualization version GIF version | ||
| Description: Representation of a function in terms of its values, analogous to dffn5 6942 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| dfafn5b | ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfafn5a 47156 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) | |
| 2 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) | |
| 3 | 2 | fnmpt 6683 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴) |
| 4 | fneq1 6634 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)) | |
| 5 | 3, 4 | syl5ibrcom 247 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴)) |
| 6 | 1, 5 | impbid2 226 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ↦ cmpt 5206 Fn wfn 6531 '''cafv 47113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-aiota 47081 df-dfat 47115 df-afv 47116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |