MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnbOLD Structured version   Visualization version   GIF version

Theorem fnsnbOLD 7106
Description: Obsolete version of fnsnb 7105 as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
fnsnb.1 𝐴 ∈ V
Assertion
Ref Expression
fnsnbOLD (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})

Proof of Theorem fnsnbOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7103 . . . . 5 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
2 df-fn 6489 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴}))
3 fnsnb.1 . . . . . . . . . . 11 𝐴 ∈ V
43snid 4614 . . . . . . . . . 10 𝐴 ∈ {𝐴}
5 eleq2 2822 . . . . . . . . . 10 (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴}))
64, 5mpbiri 258 . . . . . . . . 9 (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹)
76anim2i 617 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹𝐴 ∈ dom 𝐹))
82, 7sylbi 217 . . . . . . 7 (𝐹 Fn {𝐴} → (Fun 𝐹𝐴 ∈ dom 𝐹))
9 funfvop 6989 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
108, 9syl 17 . . . . . 6 (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2821 . . . . . 6 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 247 . . . . 5 (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
131, 12impbid 212 . . . 4 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4591 . . . 4 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . 3 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2731 . 2 (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
17 fvex 6841 . . . 4 (𝐹𝐴) ∈ V
183, 17fnsn 6544 . . 3 {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}
19 fneq1 6577 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2018, 19mpbiri 258 . 2 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴})
2116, 20impbii 209 1 (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cop 4581  dom cdm 5619  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator