| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fnsnb 7186 as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnsnb.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fnsnbOLD | ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7184 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | df-fn 6563 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴})) | |
| 3 | fnsnb.1 | . . . . . . . . . . 11 ⊢ 𝐴 ∈ V | |
| 4 | 3 | snid 4661 | . . . . . . . . . 10 ⊢ 𝐴 ∈ {𝐴} |
| 5 | eleq2 2829 | . . . . . . . . . 10 ⊢ (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ {𝐴})) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹) |
| 7 | 6 | anim2i 617 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
| 8 | 2, 7 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
| 9 | funfvop 7069 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2828 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 1, 12 | impbid 212 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4641 | . . . 4 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2734 | . 2 ⊢ (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | fvex 6918 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 18 | 3, 17 | fnsn 6623 | . . 3 ⊢ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴} |
| 19 | fneq1 6658 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴}) |
| 21 | 16, 20 | impbii 209 | 1 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 {csn 4625 〈cop 4631 dom cdm 5684 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |