| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnbOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of fnsnb 7099 as of 21-Oct-2025. A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnsnb.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| fnsnbOLD | ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr 7097 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
| 2 | df-fn 6484 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴})) | |
| 3 | fnsnb.1 | . . . . . . . . . . 11 ⊢ 𝐴 ∈ V | |
| 4 | 3 | snid 4615 | . . . . . . . . . 10 ⊢ 𝐴 ∈ {𝐴} |
| 5 | eleq2 2820 | . . . . . . . . . 10 ⊢ (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ {𝐴})) | |
| 6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹) |
| 7 | 6 | anim2i 617 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
| 8 | 2, 7 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
| 9 | funfvop 6983 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
| 10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
| 11 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
| 13 | 1, 12 | impbid 212 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
| 14 | velsn 4592 | . . . 4 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
| 15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
| 16 | 15 | eqrdv 2729 | . 2 ⊢ (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| 17 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 18 | 3, 17 | fnsn 6539 | . . 3 ⊢ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴} |
| 19 | fneq1 6572 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
| 20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴}) |
| 21 | 16, 20 | impbii 209 | 1 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 dom cdm 5616 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |