Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symgcom Structured version   Visualization version   GIF version

Theorem symgcom 33094
Description: Two permutations 𝑋 and 𝑌 commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 15-Oct-2023.)
Hypotheses
Ref Expression
symgcom.g 𝐺 = (SymGrp‘𝐴)
symgcom.b 𝐵 = (Base‘𝐺)
symgcom.x (𝜑𝑋𝐵)
symgcom.y (𝜑𝑌𝐵)
symgcom.1 (𝜑 → (𝑋𝐸) = ( I ↾ 𝐸))
symgcom.2 (𝜑 → (𝑌𝐹) = ( I ↾ 𝐹))
symgcom.3 (𝜑 → (𝐸𝐹) = ∅)
symgcom.4 (𝜑 → (𝐸𝐹) = 𝐴)
Assertion
Ref Expression
symgcom (𝜑 → (𝑋𝑌) = (𝑌𝑋))

Proof of Theorem symgcom
StepHypRef Expression
1 symgcom.4 . . . 4 (𝜑 → (𝐸𝐹) = 𝐴)
21reseq2d 5966 . . 3 (𝜑 → ((𝑋𝑌) ↾ (𝐸𝐹)) = ((𝑋𝑌) ↾ 𝐴))
3 resundi 5980 . . . 4 ((𝑋𝑌) ↾ (𝐸𝐹)) = (((𝑋𝑌) ↾ 𝐸) ∪ ((𝑋𝑌) ↾ 𝐹))
4 resco 6239 . . . . . . 7 ((𝑋𝑌) ↾ 𝐸) = (𝑋 ∘ (𝑌𝐸))
5 symgcom.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
6 symgcom.g . . . . . . . . . . . . . . 15 𝐺 = (SymGrp‘𝐴)
7 symgcom.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐺)
86, 7symgbasf1o 19356 . . . . . . . . . . . . . 14 (𝑌𝐵𝑌:𝐴1-1-onto𝐴)
95, 8syl 17 . . . . . . . . . . . . 13 (𝜑𝑌:𝐴1-1-onto𝐴)
10 f1ocnv 6830 . . . . . . . . . . . . 13 (𝑌:𝐴1-1-onto𝐴𝑌:𝐴1-1-onto𝐴)
11 f1ofun 6820 . . . . . . . . . . . . 13 (𝑌:𝐴1-1-onto𝐴 → Fun 𝑌)
129, 10, 113syl 18 . . . . . . . . . . . 12 (𝜑 → Fun 𝑌)
13 f1ofn 6819 . . . . . . . . . . . . . 14 (𝑌:𝐴1-1-onto𝐴𝑌 Fn 𝐴)
14 fnresdm 6657 . . . . . . . . . . . . . 14 (𝑌 Fn 𝐴 → (𝑌𝐴) = 𝑌)
159, 13, 143syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝐴) = 𝑌)
16 f1ofo 6825 . . . . . . . . . . . . . 14 (𝑌:𝐴1-1-onto𝐴𝑌:𝐴onto𝐴)
179, 16syl 17 . . . . . . . . . . . . 13 (𝜑𝑌:𝐴onto𝐴)
18 foeq1 6786 . . . . . . . . . . . . . 14 ((𝑌𝐴) = 𝑌 → ((𝑌𝐴):𝐴onto𝐴𝑌:𝐴onto𝐴))
1918biimpar 477 . . . . . . . . . . . . 13 (((𝑌𝐴) = 𝑌𝑌:𝐴onto𝐴) → (𝑌𝐴):𝐴onto𝐴)
2015, 17, 19syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌𝐴):𝐴onto𝐴)
21 symgcom.2 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝐹) = ( I ↾ 𝐹))
22 f1oi 6856 . . . . . . . . . . . . . 14 ( I ↾ 𝐹):𝐹1-1-onto𝐹
23 f1ofo 6825 . . . . . . . . . . . . . 14 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹onto𝐹)
2422, 23mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ( I ↾ 𝐹):𝐹onto𝐹)
25 foeq1 6786 . . . . . . . . . . . . . 14 ((𝑌𝐹) = ( I ↾ 𝐹) → ((𝑌𝐹):𝐹onto𝐹 ↔ ( I ↾ 𝐹):𝐹onto𝐹))
2625biimpar 477 . . . . . . . . . . . . 13 (((𝑌𝐹) = ( I ↾ 𝐹) ∧ ( I ↾ 𝐹):𝐹onto𝐹) → (𝑌𝐹):𝐹onto𝐹)
2721, 24, 26syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌𝐹):𝐹onto𝐹)
28 resdif 6839 . . . . . . . . . . . 12 ((Fun 𝑌 ∧ (𝑌𝐴):𝐴onto𝐴 ∧ (𝑌𝐹):𝐹onto𝐹) → (𝑌 ↾ (𝐴𝐹)):(𝐴𝐹)–1-1-onto→(𝐴𝐹))
2912, 20, 27, 28syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑌 ↾ (𝐴𝐹)):(𝐴𝐹)–1-1-onto→(𝐴𝐹))
30 ssun2 4154 . . . . . . . . . . . . . . 15 𝐹 ⊆ (𝐸𝐹)
3130, 1sseqtrid 4001 . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
32 incom 4184 . . . . . . . . . . . . . . 15 (𝐸𝐹) = (𝐹𝐸)
33 symgcom.3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝐹) = ∅)
3432, 33eqtr3id 2784 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐸) = ∅)
35 uncom 4133 . . . . . . . . . . . . . . 15 (𝐸𝐹) = (𝐹𝐸)
3635, 1eqtr3id 2784 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐸) = 𝐴)
37 uneqdifeq 4468 . . . . . . . . . . . . . . 15 ((𝐹𝐴 ∧ (𝐹𝐸) = ∅) → ((𝐹𝐸) = 𝐴 ↔ (𝐴𝐹) = 𝐸))
3837biimpa 476 . . . . . . . . . . . . . 14 (((𝐹𝐴 ∧ (𝐹𝐸) = ∅) ∧ (𝐹𝐸) = 𝐴) → (𝐴𝐹) = 𝐸)
3931, 34, 36, 38syl21anc 837 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐹) = 𝐸)
4039reseq2d 5966 . . . . . . . . . . . 12 (𝜑 → (𝑌 ↾ (𝐴𝐹)) = (𝑌𝐸))
4140, 39, 39f1oeq123d 6812 . . . . . . . . . . 11 (𝜑 → ((𝑌 ↾ (𝐴𝐹)):(𝐴𝐹)–1-1-onto→(𝐴𝐹) ↔ (𝑌𝐸):𝐸1-1-onto𝐸))
4229, 41mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑌𝐸):𝐸1-1-onto𝐸)
43 f1of 6818 . . . . . . . . . 10 ((𝑌𝐸):𝐸1-1-onto𝐸 → (𝑌𝐸):𝐸𝐸)
4442, 43syl 17 . . . . . . . . 9 (𝜑 → (𝑌𝐸):𝐸𝐸)
4544frnd 6714 . . . . . . . 8 (𝜑 → ran (𝑌𝐸) ⊆ 𝐸)
46 cores 6238 . . . . . . . 8 (ran (𝑌𝐸) ⊆ 𝐸 → ((𝑋𝐸) ∘ (𝑌𝐸)) = (𝑋 ∘ (𝑌𝐸)))
4745, 46syl 17 . . . . . . 7 (𝜑 → ((𝑋𝐸) ∘ (𝑌𝐸)) = (𝑋 ∘ (𝑌𝐸)))
484, 47eqtr4id 2789 . . . . . 6 (𝜑 → ((𝑋𝑌) ↾ 𝐸) = ((𝑋𝐸) ∘ (𝑌𝐸)))
49 symgcom.1 . . . . . . 7 (𝜑 → (𝑋𝐸) = ( I ↾ 𝐸))
5049coeq1d 5841 . . . . . 6 (𝜑 → ((𝑋𝐸) ∘ (𝑌𝐸)) = (( I ↾ 𝐸) ∘ (𝑌𝐸)))
51 fcoi2 6753 . . . . . . 7 ((𝑌𝐸):𝐸𝐸 → (( I ↾ 𝐸) ∘ (𝑌𝐸)) = (𝑌𝐸))
5244, 51syl 17 . . . . . 6 (𝜑 → (( I ↾ 𝐸) ∘ (𝑌𝐸)) = (𝑌𝐸))
5348, 50, 523eqtrd 2774 . . . . 5 (𝜑 → ((𝑋𝑌) ↾ 𝐸) = (𝑌𝐸))
54 resco 6239 . . . . . 6 ((𝑋𝑌) ↾ 𝐹) = (𝑋 ∘ (𝑌𝐹))
5521coeq2d 5842 . . . . . . 7 (𝜑 → (𝑋 ∘ (𝑌𝐹)) = (𝑋 ∘ ( I ↾ 𝐹)))
56 coires1 6253 . . . . . . 7 (𝑋 ∘ ( I ↾ 𝐹)) = (𝑋𝐹)
5755, 56eqtrdi 2786 . . . . . 6 (𝜑 → (𝑋 ∘ (𝑌𝐹)) = (𝑋𝐹))
5854, 57eqtrid 2782 . . . . 5 (𝜑 → ((𝑋𝑌) ↾ 𝐹) = (𝑋𝐹))
5953, 58uneq12d 4144 . . . 4 (𝜑 → (((𝑋𝑌) ↾ 𝐸) ∪ ((𝑋𝑌) ↾ 𝐹)) = ((𝑌𝐸) ∪ (𝑋𝐹)))
603, 59eqtrid 2782 . . 3 (𝜑 → ((𝑋𝑌) ↾ (𝐸𝐹)) = ((𝑌𝐸) ∪ (𝑋𝐹)))
61 symgcom.x . . . . . 6 (𝜑𝑋𝐵)
626, 7symgbasf1o 19356 . . . . . 6 (𝑋𝐵𝑋:𝐴1-1-onto𝐴)
6361, 62syl 17 . . . . 5 (𝜑𝑋:𝐴1-1-onto𝐴)
64 f1oco 6841 . . . . 5 ((𝑋:𝐴1-1-onto𝐴𝑌:𝐴1-1-onto𝐴) → (𝑋𝑌):𝐴1-1-onto𝐴)
6563, 9, 64syl2anc 584 . . . 4 (𝜑 → (𝑋𝑌):𝐴1-1-onto𝐴)
66 f1ofn 6819 . . . 4 ((𝑋𝑌):𝐴1-1-onto𝐴 → (𝑋𝑌) Fn 𝐴)
67 fnresdm 6657 . . . 4 ((𝑋𝑌) Fn 𝐴 → ((𝑋𝑌) ↾ 𝐴) = (𝑋𝑌))
6865, 66, 673syl 18 . . 3 (𝜑 → ((𝑋𝑌) ↾ 𝐴) = (𝑋𝑌))
692, 60, 683eqtr3d 2778 . 2 (𝜑 → ((𝑌𝐸) ∪ (𝑋𝐹)) = (𝑋𝑌))
701reseq2d 5966 . . 3 (𝜑 → ((𝑌𝑋) ↾ (𝐸𝐹)) = ((𝑌𝑋) ↾ 𝐴))
71 resundi 5980 . . . 4 ((𝑌𝑋) ↾ (𝐸𝐹)) = (((𝑌𝑋) ↾ 𝐸) ∪ ((𝑌𝑋) ↾ 𝐹))
72 resco 6239 . . . . . 6 ((𝑌𝑋) ↾ 𝐸) = (𝑌 ∘ (𝑋𝐸))
7349coeq2d 5842 . . . . . . 7 (𝜑 → (𝑌 ∘ (𝑋𝐸)) = (𝑌 ∘ ( I ↾ 𝐸)))
74 coires1 6253 . . . . . . 7 (𝑌 ∘ ( I ↾ 𝐸)) = (𝑌𝐸)
7573, 74eqtrdi 2786 . . . . . 6 (𝜑 → (𝑌 ∘ (𝑋𝐸)) = (𝑌𝐸))
7672, 75eqtrid 2782 . . . . 5 (𝜑 → ((𝑌𝑋) ↾ 𝐸) = (𝑌𝐸))
77 resco 6239 . . . . . . 7 ((𝑌𝑋) ↾ 𝐹) = (𝑌 ∘ (𝑋𝐹))
78 f1ocnv 6830 . . . . . . . . . . . . 13 (𝑋:𝐴1-1-onto𝐴𝑋:𝐴1-1-onto𝐴)
79 f1ofun 6820 . . . . . . . . . . . . 13 (𝑋:𝐴1-1-onto𝐴 → Fun 𝑋)
8063, 78, 793syl 18 . . . . . . . . . . . 12 (𝜑 → Fun 𝑋)
81 f1ofn 6819 . . . . . . . . . . . . . 14 (𝑋:𝐴1-1-onto𝐴𝑋 Fn 𝐴)
82 fnresdm 6657 . . . . . . . . . . . . . 14 (𝑋 Fn 𝐴 → (𝑋𝐴) = 𝑋)
8363, 81, 823syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐴) = 𝑋)
84 f1ofo 6825 . . . . . . . . . . . . . 14 (𝑋:𝐴1-1-onto𝐴𝑋:𝐴onto𝐴)
8563, 84syl 17 . . . . . . . . . . . . 13 (𝜑𝑋:𝐴onto𝐴)
86 foeq1 6786 . . . . . . . . . . . . . 14 ((𝑋𝐴) = 𝑋 → ((𝑋𝐴):𝐴onto𝐴𝑋:𝐴onto𝐴))
8786biimpar 477 . . . . . . . . . . . . 13 (((𝑋𝐴) = 𝑋𝑋:𝐴onto𝐴) → (𝑋𝐴):𝐴onto𝐴)
8883, 85, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐴):𝐴onto𝐴)
89 f1oi 6856 . . . . . . . . . . . . . 14 ( I ↾ 𝐸):𝐸1-1-onto𝐸
90 f1ofo 6825 . . . . . . . . . . . . . 14 (( I ↾ 𝐸):𝐸1-1-onto𝐸 → ( I ↾ 𝐸):𝐸onto𝐸)
9189, 90mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ( I ↾ 𝐸):𝐸onto𝐸)
92 foeq1 6786 . . . . . . . . . . . . . 14 ((𝑋𝐸) = ( I ↾ 𝐸) → ((𝑋𝐸):𝐸onto𝐸 ↔ ( I ↾ 𝐸):𝐸onto𝐸))
9392biimpar 477 . . . . . . . . . . . . 13 (((𝑋𝐸) = ( I ↾ 𝐸) ∧ ( I ↾ 𝐸):𝐸onto𝐸) → (𝑋𝐸):𝐸onto𝐸)
9449, 91, 93syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐸):𝐸onto𝐸)
95 resdif 6839 . . . . . . . . . . . 12 ((Fun 𝑋 ∧ (𝑋𝐴):𝐴onto𝐴 ∧ (𝑋𝐸):𝐸onto𝐸) → (𝑋 ↾ (𝐴𝐸)):(𝐴𝐸)–1-1-onto→(𝐴𝐸))
9680, 88, 94, 95syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑋 ↾ (𝐴𝐸)):(𝐴𝐸)–1-1-onto→(𝐴𝐸))
97 ssun1 4153 . . . . . . . . . . . . . . 15 𝐸 ⊆ (𝐸𝐹)
9897, 1sseqtrid 4001 . . . . . . . . . . . . . 14 (𝜑𝐸𝐴)
99 uneqdifeq 4468 . . . . . . . . . . . . . . 15 ((𝐸𝐴 ∧ (𝐸𝐹) = ∅) → ((𝐸𝐹) = 𝐴 ↔ (𝐴𝐸) = 𝐹))
10099biimpa 476 . . . . . . . . . . . . . 14 (((𝐸𝐴 ∧ (𝐸𝐹) = ∅) ∧ (𝐸𝐹) = 𝐴) → (𝐴𝐸) = 𝐹)
10198, 33, 1, 100syl21anc 837 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐸) = 𝐹)
102101reseq2d 5966 . . . . . . . . . . . 12 (𝜑 → (𝑋 ↾ (𝐴𝐸)) = (𝑋𝐹))
103102, 101, 101f1oeq123d 6812 . . . . . . . . . . 11 (𝜑 → ((𝑋 ↾ (𝐴𝐸)):(𝐴𝐸)–1-1-onto→(𝐴𝐸) ↔ (𝑋𝐹):𝐹1-1-onto𝐹))
10496, 103mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑋𝐹):𝐹1-1-onto𝐹)
105 f1of 6818 . . . . . . . . . 10 ((𝑋𝐹):𝐹1-1-onto𝐹 → (𝑋𝐹):𝐹𝐹)
106104, 105syl 17 . . . . . . . . 9 (𝜑 → (𝑋𝐹):𝐹𝐹)
107106frnd 6714 . . . . . . . 8 (𝜑 → ran (𝑋𝐹) ⊆ 𝐹)
108 cores 6238 . . . . . . . 8 (ran (𝑋𝐹) ⊆ 𝐹 → ((𝑌𝐹) ∘ (𝑋𝐹)) = (𝑌 ∘ (𝑋𝐹)))
109107, 108syl 17 . . . . . . 7 (𝜑 → ((𝑌𝐹) ∘ (𝑋𝐹)) = (𝑌 ∘ (𝑋𝐹)))
11077, 109eqtr4id 2789 . . . . . 6 (𝜑 → ((𝑌𝑋) ↾ 𝐹) = ((𝑌𝐹) ∘ (𝑋𝐹)))
11121coeq1d 5841 . . . . . 6 (𝜑 → ((𝑌𝐹) ∘ (𝑋𝐹)) = (( I ↾ 𝐹) ∘ (𝑋𝐹)))
112 fcoi2 6753 . . . . . . 7 ((𝑋𝐹):𝐹𝐹 → (( I ↾ 𝐹) ∘ (𝑋𝐹)) = (𝑋𝐹))
113106, 112syl 17 . . . . . 6 (𝜑 → (( I ↾ 𝐹) ∘ (𝑋𝐹)) = (𝑋𝐹))
114110, 111, 1133eqtrd 2774 . . . . 5 (𝜑 → ((𝑌𝑋) ↾ 𝐹) = (𝑋𝐹))
11576, 114uneq12d 4144 . . . 4 (𝜑 → (((𝑌𝑋) ↾ 𝐸) ∪ ((𝑌𝑋) ↾ 𝐹)) = ((𝑌𝐸) ∪ (𝑋𝐹)))
11671, 115eqtrid 2782 . . 3 (𝜑 → ((𝑌𝑋) ↾ (𝐸𝐹)) = ((𝑌𝐸) ∪ (𝑋𝐹)))
117 f1oco 6841 . . . . 5 ((𝑌:𝐴1-1-onto𝐴𝑋:𝐴1-1-onto𝐴) → (𝑌𝑋):𝐴1-1-onto𝐴)
1189, 63, 117syl2anc 584 . . . 4 (𝜑 → (𝑌𝑋):𝐴1-1-onto𝐴)
119 f1ofn 6819 . . . 4 ((𝑌𝑋):𝐴1-1-onto𝐴 → (𝑌𝑋) Fn 𝐴)
120 fnresdm 6657 . . . 4 ((𝑌𝑋) Fn 𝐴 → ((𝑌𝑋) ↾ 𝐴) = (𝑌𝑋))
121118, 119, 1203syl 18 . . 3 (𝜑 → ((𝑌𝑋) ↾ 𝐴) = (𝑌𝑋))
12270, 116, 1213eqtr3d 2778 . 2 (𝜑 → ((𝑌𝐸) ∪ (𝑋𝐹)) = (𝑌𝑋))
12369, 122eqtr3d 2772 1 (𝜑 → (𝑋𝑌) = (𝑌𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   I cid 5547  ccnv 5653  ran crn 5655  cres 5656  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  Basecbs 17228  SymGrpcsymg 19350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-efmnd 18847  df-symg 19351
This theorem is referenced by:  symgcom2  33095  cyc3conja  33168
  Copyright terms: Public domain W3C validator