![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndfo | Structured version Visualization version GIF version |
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mndfo.b | ⊢ 𝐵 = (Base‘𝐺) |
mndfo.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndfo | ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2735 | . . . 4 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
3 | 1, 2 | mndpfo 18783 | . . 3 ⊢ (𝐺 ∈ Mnd → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
5 | mndfo.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
6 | 1, 5, 2 | plusfeq 18674 | . . . . 5 ⊢ ( + Fn (𝐵 × 𝐵) → (+𝑓‘𝐺) = + ) |
7 | 6 | eqcomd 2741 | . . . 4 ⊢ ( + Fn (𝐵 × 𝐵) → + = (+𝑓‘𝐺)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓‘𝐺)) |
9 | foeq1 6817 | . . 3 ⊢ ( + = (+𝑓‘𝐺) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) |
11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 × cxp 5687 Fn wfn 6558 –onto→wfo 6561 ‘cfv 6563 Basecbs 17245 +gcplusg 17298 +𝑓cplusf 18663 Mndcmnd 18760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-0g 17488 df-plusf 18665 df-mgm 18666 df-sgrp 18745 df-mnd 18761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |