MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndfo Structured version   Visualization version   GIF version

Theorem mndfo 18741
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndfo.b 𝐵 = (Base‘𝐺)
mndfo.p + = (+g𝐺)
Assertion
Ref Expression
mndfo ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem mndfo
StepHypRef Expression
1 mndfo.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2736 . . . 4 (+𝑓𝐺) = (+𝑓𝐺)
31, 2mndpfo 18740 . . 3 (𝐺 ∈ Mnd → (+𝑓𝐺):(𝐵 × 𝐵)–onto𝐵)
43adantr 480 . 2 ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓𝐺):(𝐵 × 𝐵)–onto𝐵)
5 mndfo.p . . . . . 6 + = (+g𝐺)
61, 5, 2plusfeq 18631 . . . . 5 ( + Fn (𝐵 × 𝐵) → (+𝑓𝐺) = + )
76eqcomd 2742 . . . 4 ( + Fn (𝐵 × 𝐵) → + = (+𝑓𝐺))
87adantl 481 . . 3 ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓𝐺))
9 foeq1 6791 . . 3 ( + = (+𝑓𝐺) → ( + :(𝐵 × 𝐵)–onto𝐵 ↔ (+𝑓𝐺):(𝐵 × 𝐵)–onto𝐵))
108, 9syl 17 . 2 ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto𝐵 ↔ (+𝑓𝐺):(𝐵 × 𝐵)–onto𝐵))
114, 10mpbird 257 1 ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   × cxp 5657   Fn wfn 6531  ontowfo 6534  cfv 6536  Basecbs 17233  +gcplusg 17276  +𝑓cplusf 18620  Mndcmnd 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-0g 17460  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator