![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndfo | Structured version Visualization version GIF version |
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mndfo.b | ⊢ 𝐵 = (Base‘𝐺) |
mndfo.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndfo | ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2800 | . . . 4 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
3 | 1, 2 | mndpfo 17628 | . . 3 ⊢ (𝐺 ∈ Mnd → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
4 | 3 | adantr 473 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
5 | mndfo.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
6 | 1, 5, 2 | plusfeq 17563 | . . . . 5 ⊢ ( + Fn (𝐵 × 𝐵) → (+𝑓‘𝐺) = + ) |
7 | 6 | eqcomd 2806 | . . . 4 ⊢ ( + Fn (𝐵 × 𝐵) → + = (+𝑓‘𝐺)) |
8 | 7 | adantl 474 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓‘𝐺)) |
9 | foeq1 6328 | . . 3 ⊢ ( + = (+𝑓‘𝐺) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) |
11 | 4, 10 | mpbird 249 | 1 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 × cxp 5311 Fn wfn 6097 –onto→wfo 6100 ‘cfv 6102 Basecbs 16183 +gcplusg 16266 +𝑓cplusf 17553 Mndcmnd 17608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fo 6108 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-0g 16416 df-plusf 17555 df-mgm 17556 df-sgrp 17598 df-mnd 17609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |