| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndfo | Structured version Visualization version GIF version | ||
| Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mndfo.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndfo.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndfo | ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . . . 4 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 3 | 1, 2 | mndpfo 18669 | . . 3 ⊢ (𝐺 ∈ Mnd → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
| 5 | mndfo.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 6 | 1, 5, 2 | plusfeq 18560 | . . . . 5 ⊢ ( + Fn (𝐵 × 𝐵) → (+𝑓‘𝐺) = + ) |
| 7 | 6 | eqcomd 2739 | . . . 4 ⊢ ( + Fn (𝐵 × 𝐵) → + = (+𝑓‘𝐺)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓‘𝐺)) |
| 9 | foeq1 6738 | . . 3 ⊢ ( + = (+𝑓‘𝐺) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 × cxp 5619 Fn wfn 6483 –onto→wfo 6486 ‘cfv 6488 Basecbs 17124 +gcplusg 17165 +𝑓cplusf 18549 Mndcmnd 18646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-0g 17349 df-plusf 18551 df-mgm 18552 df-sgrp 18631 df-mnd 18647 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |