![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcld | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
fovcld.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
Ref | Expression |
---|---|
fovcld | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) | |
2 | fovcld.1 | . . . 4 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
3 | ffnov 7538 | . . . . 5 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
4 | 3 | simprbi 496 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
6 | 5 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
7 | oveq1 7419 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
8 | 7 | eleq1d 2817 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
9 | oveq2 7420 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
10 | 9 | eleq1d 2817 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
11 | 8, 10 | rspc2v 3622 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
12 | 1, 6, 11 | sylc 65 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 × cxp 5674 Fn wfn 6538 ⟶wf 6539 (class class class)co 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 |
This theorem is referenced by: fovcl 7540 imasrng 20078 imaslmod 32904 |
Copyright terms: Public domain | W3C validator |