MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovcld Structured version   Visualization version   GIF version

Theorem fovcld 7579
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Revised by Thierry Arnoux, 17-Feb-2017.)
Hypothesis
Ref Expression
fovcld.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
Assertion
Ref Expression
fovcld ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovcld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 1150 . 2 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝑅𝐵𝑆))
2 fovcld.1 . . . 4 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
3 ffnov 7578 . . . . 5 (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶))
43simprbi 496 . . . 4 (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶)
52, 4syl 17 . . 3 (𝜑 → ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶)
653ad2ant1 1133 . 2 ((𝜑𝐴𝑅𝐵𝑆) → ∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶)
7 oveq1 7457 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
87eleq1d 2829 . . 3 (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶))
9 oveq2 7458 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
109eleq1d 2829 . . 3 (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))
118, 10rspc2v 3646 . 2 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶))
121, 6, 11sylc 65 1 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   × cxp 5698   Fn wfn 6570  wf 6571  (class class class)co 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583  df-ov 7453
This theorem is referenced by:  fovcl  7580  imasrng  20206  imaslmod  33348
  Copyright terms: Public domain W3C validator