MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpm Structured version   Visualization version   GIF version

Theorem fpm 8726
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
fpm (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpm
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 fpmg 8719 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
41, 2, 3mp3an12 1450 1 (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3441  wf 6469  (class class class)co 7329  pm cpm 8679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-pm 8681
This theorem is referenced by:  plycpn  25547  iswlkg  28182  wlkp1lem4  28245  isupwlkg  45639
  Copyright terms: Public domain W3C validator