Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fpm | Structured version Visualization version GIF version |
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
elmap.1 | ⊢ 𝐴 ∈ V |
elmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fpm | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmap.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elmap.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | fpmg 8719 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐹:𝐴⟶𝐵) → 𝐹 ∈ (𝐵 ↑pm 𝐴)) | |
4 | 1, 2, 3 | mp3an12 1450 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ∈ (𝐵 ↑pm 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ⟶wf 6469 (class class class)co 7329 ↑pm cpm 8679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-pm 8681 |
This theorem is referenced by: plycpn 25547 iswlkg 28182 wlkp1lem4 28245 isupwlkg 45639 |
Copyright terms: Public domain | W3C validator |