MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpm Structured version   Visualization version   GIF version

Theorem fpm 8887
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
fpm (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))

Proof of Theorem fpm
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 fpmg 8880 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
41, 2, 3mp3an12 1448 1 (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  Vcvv 3469  wf 6538  (class class class)co 7414  pm cpm 8839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-pm 8841
This theorem is referenced by:  plycpn  26217  iswlkg  29420  wlkp1lem4  29483  isupwlkg  47171
  Copyright terms: Public domain W3C validator