![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswlkg | Structured version Visualization version GIF version |
Description: Generalization of iswlk 29132: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
iswlkg.v | β’ π = (VtxβπΊ) |
iswlkg.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
iswlkg | β’ (πΊ β π β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkv 29134 | . . . 4 β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) | |
2 | 3simpc 1148 | . . . 4 β’ ((πΊ β V β§ πΉ β V β§ π β V) β (πΉ β V β§ π β V)) | |
3 | 1, 2 | syl 17 | . . 3 β’ (πΉ(WalksβπΊ)π β (πΉ β V β§ π β V)) |
4 | 3 | a1i 11 | . 2 β’ (πΊ β π β (πΉ(WalksβπΊ)π β (πΉ β V β§ π β V))) |
5 | elex 3491 | . . . . 5 β’ (πΉ β Word dom πΌ β πΉ β V) | |
6 | ovex 7446 | . . . . . . 7 β’ (0...(β―βπΉ)) β V | |
7 | iswlkg.v | . . . . . . . 8 β’ π = (VtxβπΊ) | |
8 | 7 | fvexi 6906 | . . . . . . 7 β’ π β V |
9 | 6, 8 | fpm 8873 | . . . . . 6 β’ (π:(0...(β―βπΉ))βΆπ β π β (π βpm (0...(β―βπΉ)))) |
10 | 9 | elexd 3493 | . . . . 5 β’ (π:(0...(β―βπΉ))βΆπ β π β V) |
11 | 5, 10 | anim12i 611 | . . . 4 β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ) β (πΉ β V β§ π β V)) |
12 | 11 | 3adant3 1130 | . . 3 β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))) β (πΉ β V β§ π β V)) |
13 | 12 | a1i 11 | . 2 β’ (πΊ β π β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))) β (πΉ β V β§ π β V))) |
14 | iswlkg.i | . . . 4 β’ πΌ = (iEdgβπΊ) | |
15 | 7, 14 | iswlk 29132 | . . 3 β’ ((πΊ β π β§ πΉ β V β§ π β V) β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))))) |
16 | 15 | 3expib 1120 | . 2 β’ (πΊ β π β ((πΉ β V β§ π β V) β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))))))) |
17 | 4, 13, 16 | pm5.21ndd 378 | 1 β’ (πΊ β π β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πΉβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 if-wif 1059 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 Vcvv 3472 β wss 3949 {csn 4629 {cpr 4631 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7413 βpm cpm 8825 0cc0 11114 1c1 11115 + caddc 11117 ...cfz 13490 ..^cfzo 13633 β―chash 14296 Word cword 14470 Vtxcvtx 28521 iEdgciedg 28522 Walkscwlks 29118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 df-wlks 29121 |
This theorem is referenced by: wlkcomp 29153 wlkl1loop 29160 upgriswlk 29163 wlkres 29192 wlkp1lem8 29202 lfgriswlk 29210 2pthnloop 29253 isclwlke 29299 0wlk 29634 1wlkd 29659 pfxwlk 34410 revwlk 34411 subgrwlk 34419 |
Copyright terms: Public domain | W3C validator |