Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswlkg | Structured version Visualization version GIF version |
Description: Generalization of iswlk 27880: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
iswlkg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
iswlkg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
iswlkg | ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkv 27882 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
2 | 3simpc 1148 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
5 | elex 3440 | . . . . 5 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ V) | |
6 | ovex 7288 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) ∈ V | |
7 | iswlkg.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | fvexi 6770 | . . . . . . 7 ⊢ 𝑉 ∈ V |
9 | 6, 8 | fpm 8621 | . . . . . 6 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ (𝑉 ↑pm (0...(♯‘𝐹)))) |
10 | 9 | elexd 3442 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → 𝑃 ∈ V) |
11 | 5, 10 | anim12i 612 | . . . 4 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
12 | 11 | 3adant3 1130 | . . 3 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
13 | 12 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
14 | iswlkg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
15 | 7, 14 | iswlk 27880 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
16 | 15 | 3expib 1120 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))))) |
17 | 4, 13, 16 | pm5.21ndd 380 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 if-wif 1059 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 {csn 4558 {cpr 4560 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑pm cpm 8574 0cc0 10802 1c1 10803 + caddc 10805 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 Vtxcvtx 27269 iEdgciedg 27270 Walkscwlks 27866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-wlks 27869 |
This theorem is referenced by: wlkcomp 27900 wlkl1loop 27907 upgriswlk 27910 wlkres 27940 wlkp1lem8 27950 lfgriswlk 27958 2pthnloop 28000 isclwlke 28046 0wlk 28381 1wlkd 28406 pfxwlk 32985 revwlk 32986 subgrwlk 32994 |
Copyright terms: Public domain | W3C validator |