| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29679. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
| wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
| wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
| wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
| wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
| wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| Ref | Expression |
|---|---|
| wlkp1lem4 | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.w | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 2 | wlkf 29614 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 4 | eqid 2733 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 5 | 4 | wlkp 29616 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 6 | 3, 5 | jca 511 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
| 8 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 9 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
| 10 | 8, 9 | eleqtrrd 2836 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Vtx‘𝑆)) |
| 11 | 10 | elfvexd 6867 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑆 ∈ V) |
| 13 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
| 14 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | |
| 15 | snex 5378 | . . . . 5 ⊢ {〈𝑁, 𝐵〉} ∈ V | |
| 16 | unexg 7685 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ {〈𝑁, 𝐵〉} ∈ V) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) | |
| 17 | 14, 15, 16 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) |
| 18 | 13, 17 | eqeltrid 2837 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐻 ∈ V) |
| 19 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
| 20 | ovex 7388 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) ∈ V | |
| 21 | fvex 6844 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
| 22 | 20, 21 | fpm 8809 | . . . . . 6 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
| 23 | 22 | ad2antll 729 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
| 24 | snex 5378 | . . . . 5 ⊢ {〈(𝑁 + 1), 𝐶〉} ∈ V | |
| 25 | unexg 7685 | . . . . 5 ⊢ ((𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹))) ∧ {〈(𝑁 + 1), 𝐶〉} ∈ V) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) | |
| 26 | 23, 24, 25 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) |
| 27 | 19, 26 | eqeltrid 2837 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑄 ∈ V) |
| 28 | 12, 18, 27 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| 29 | 7, 28 | mpdan 687 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ⊆ wss 3898 {csn 4577 {cpr 4579 〈cop 4583 class class class wbr 5095 dom cdm 5621 Fun wfun 6483 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑pm cpm 8760 Fincfn 8879 0cc0 11017 1c1 11018 + caddc 11020 ...cfz 13414 ♯chash 14244 Word cword 14427 Vtxcvtx 28995 iEdgciedg 28996 Edgcedg 29046 Walkscwlks 29596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-wlks 29599 |
| This theorem is referenced by: wlkp1 29679 |
| Copyright terms: Public domain | W3C validator |