![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 27163. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem4 | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | eqid 2772 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | wlkf 27093 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
4 | eqid 2772 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | wlkp 27095 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
6 | 3, 5 | jca 504 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
8 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
10 | 8, 9 | eleqtrrd 2863 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Vtx‘𝑆)) |
11 | 10 | elfvexd 6528 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | 11 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑆 ∈ V) |
13 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
14 | simprl 758 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | |
15 | snex 5182 | . . . . 5 ⊢ {〈𝑁, 𝐵〉} ∈ V | |
16 | unexg 7283 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ {〈𝑁, 𝐵〉} ∈ V) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) | |
17 | 14, 15, 16 | sylancl 577 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) |
18 | 13, 17 | syl5eqel 2864 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐻 ∈ V) |
19 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
20 | ovex 7002 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) ∈ V | |
21 | fvex 6506 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
22 | 20, 21 | fpm 8233 | . . . . . 6 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
23 | 22 | ad2antll 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
24 | snex 5182 | . . . . 5 ⊢ {〈(𝑁 + 1), 𝐶〉} ∈ V | |
25 | unexg 7283 | . . . . 5 ⊢ ((𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹))) ∧ {〈(𝑁 + 1), 𝐶〉} ∈ V) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) | |
26 | 23, 24, 25 | sylancl 577 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) |
27 | 19, 26 | syl5eqel 2864 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑄 ∈ V) |
28 | 12, 18, 27 | 3jca 1108 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
29 | 7, 28 | mpdan 674 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 Vcvv 3409 ∪ cun 3821 ⊆ wss 3823 {csn 4435 {cpr 4437 〈cop 4441 class class class wbr 4923 dom cdm 5401 Fun wfun 6176 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ↑pm cpm 8201 Fincfn 8300 0cc0 10329 1c1 10330 + caddc 10332 ...cfz 12702 ♯chash 13499 Word cword 13666 Vtxcvtx 26478 iEdgciedg 26479 Edgcedg 26529 Walkscwlks 27075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ifp 1044 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-er 8083 df-map 8202 df-pm 8203 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-fzo 12844 df-hash 13500 df-word 13667 df-wlks 27078 |
This theorem is referenced by: wlkp1 27163 |
Copyright terms: Public domain | W3C validator |