Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 28250. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem4 | ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . . 3 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | eqid 2736 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | wlkf 28183 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
4 | eqid 2736 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
5 | 4 | wlkp 28185 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
6 | 3, 5 | jca 512 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) |
8 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
10 | 8, 9 | eleqtrrd 2840 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Vtx‘𝑆)) |
11 | 10 | elfvexd 6858 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑆 ∈ V) |
13 | wlkp1.h | . . . 4 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
14 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐹 ∈ Word dom (iEdg‘𝐺)) | |
15 | snex 5373 | . . . . 5 ⊢ {〈𝑁, 𝐵〉} ∈ V | |
16 | unexg 7653 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ {〈𝑁, 𝐵〉} ∈ V) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) | |
17 | 14, 15, 16 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝐹 ∪ {〈𝑁, 𝐵〉}) ∈ V) |
18 | 13, 17 | eqeltrid 2841 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝐻 ∈ V) |
19 | wlkp1.q | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
20 | ovex 7362 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) ∈ V | |
21 | fvex 6832 | . . . . . . 7 ⊢ (Vtx‘𝐺) ∈ V | |
22 | 20, 21 | fpm 8726 | . . . . . 6 ⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
23 | 22 | ad2antll 726 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹)))) |
24 | snex 5373 | . . . . 5 ⊢ {〈(𝑁 + 1), 𝐶〉} ∈ V | |
25 | unexg 7653 | . . . . 5 ⊢ ((𝑃 ∈ ((Vtx‘𝐺) ↑pm (0...(♯‘𝐹))) ∧ {〈(𝑁 + 1), 𝐶〉} ∈ V) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) | |
26 | 23, 24, 25 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) ∈ V) |
27 | 19, 26 | eqeltrid 2841 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → 𝑄 ∈ V) |
28 | 12, 18, 27 | 3jca 1127 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))) → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
29 | 7, 28 | mpdan 684 | 1 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 ⊆ wss 3897 {csn 4572 {cpr 4574 〈cop 4578 class class class wbr 5089 dom cdm 5614 Fun wfun 6467 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 ↑pm cpm 8679 Fincfn 8796 0cc0 10964 1c1 10965 + caddc 10967 ...cfz 13332 ♯chash 14137 Word cword 14309 Vtxcvtx 27568 iEdgciedg 27569 Edgcedg 27619 Walkscwlks 28165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-hash 14138 df-word 14310 df-wlks 28168 |
This theorem is referenced by: wlkp1 28250 |
Copyright terms: Public domain | W3C validator |