![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29539. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
wlkp1.q | β’ π = (π βͺ {β¨(π + 1), πΆβ©}) |
wlkp1.s | β’ (π β (Vtxβπ) = π) |
Ref | Expression |
---|---|
wlkp1lem4 | β’ (π β (π β V β§ π» β V β§ π β V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . . 3 β’ (π β πΉ(WalksβπΊ)π) | |
2 | eqid 2725 | . . . . 5 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
3 | 2 | wlkf 29472 | . . . 4 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
4 | eqid 2725 | . . . . 5 β’ (VtxβπΊ) = (VtxβπΊ) | |
5 | 4 | wlkp 29474 | . . . 4 β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
6 | 3, 5 | jca 510 | . . 3 β’ (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) |
7 | 1, 6 | syl 17 | . 2 β’ (π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) |
8 | wlkp1.c | . . . . . 6 β’ (π β πΆ β π) | |
9 | wlkp1.s | . . . . . 6 β’ (π β (Vtxβπ) = π) | |
10 | 8, 9 | eleqtrrd 2828 | . . . . 5 β’ (π β πΆ β (Vtxβπ)) |
11 | 10 | elfvexd 6931 | . . . 4 β’ (π β π β V) |
12 | 11 | adantr 479 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β V) |
13 | wlkp1.h | . . . 4 β’ π» = (πΉ βͺ {β¨π, π΅β©}) | |
14 | simprl 769 | . . . . 5 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β πΉ β Word dom (iEdgβπΊ)) | |
15 | snex 5427 | . . . . 5 β’ {β¨π, π΅β©} β V | |
16 | unexg 7749 | . . . . 5 β’ ((πΉ β Word dom (iEdgβπΊ) β§ {β¨π, π΅β©} β V) β (πΉ βͺ {β¨π, π΅β©}) β V) | |
17 | 14, 15, 16 | sylancl 584 | . . . 4 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (πΉ βͺ {β¨π, π΅β©}) β V) |
18 | 13, 17 | eqeltrid 2829 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π» β V) |
19 | wlkp1.q | . . . 4 β’ π = (π βͺ {β¨(π + 1), πΆβ©}) | |
20 | ovex 7449 | . . . . . . 7 β’ (0...(β―βπΉ)) β V | |
21 | fvex 6905 | . . . . . . 7 β’ (VtxβπΊ) β V | |
22 | 20, 21 | fpm 8892 | . . . . . 6 β’ (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β π β ((VtxβπΊ) βpm (0...(β―βπΉ)))) |
23 | 22 | ad2antll 727 | . . . . 5 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β ((VtxβπΊ) βpm (0...(β―βπΉ)))) |
24 | snex 5427 | . . . . 5 β’ {β¨(π + 1), πΆβ©} β V | |
25 | unexg 7749 | . . . . 5 β’ ((π β ((VtxβπΊ) βpm (0...(β―βπΉ))) β§ {β¨(π + 1), πΆβ©} β V) β (π βͺ {β¨(π + 1), πΆβ©}) β V) | |
26 | 23, 24, 25 | sylancl 584 | . . . 4 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (π βͺ {β¨(π + 1), πΆβ©}) β V) |
27 | 19, 26 | eqeltrid 2829 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β V) |
28 | 12, 18, 27 | 3jca 1125 | . 2 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (π β V β§ π» β V β§ π β V)) |
29 | 7, 28 | mpdan 685 | 1 β’ (π β (π β V β§ π» β V β§ π β V)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3463 βͺ cun 3937 β wss 3939 {csn 4624 {cpr 4626 β¨cop 4630 class class class wbr 5143 dom cdm 5672 Fun wfun 6537 βΆwf 6539 βcfv 6543 (class class class)co 7416 βpm cpm 8844 Fincfn 8962 0cc0 11138 1c1 11139 + caddc 11141 ...cfz 13516 β―chash 14321 Word cword 14496 Vtxcvtx 28853 iEdgciedg 28854 Edgcedg 28904 Walkscwlks 29454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-wlks 29457 |
This theorem is referenced by: wlkp1 29539 |
Copyright terms: Public domain | W3C validator |