![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem4 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 28927. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | β’ π = (VtxβπΊ) |
wlkp1.i | β’ πΌ = (iEdgβπΊ) |
wlkp1.f | β’ (π β Fun πΌ) |
wlkp1.a | β’ (π β πΌ β Fin) |
wlkp1.b | β’ (π β π΅ β π) |
wlkp1.c | β’ (π β πΆ β π) |
wlkp1.d | β’ (π β Β¬ π΅ β dom πΌ) |
wlkp1.w | β’ (π β πΉ(WalksβπΊ)π) |
wlkp1.n | β’ π = (β―βπΉ) |
wlkp1.e | β’ (π β πΈ β (EdgβπΊ)) |
wlkp1.x | β’ (π β {(πβπ), πΆ} β πΈ) |
wlkp1.u | β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
wlkp1.h | β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
wlkp1.q | β’ π = (π βͺ {β¨(π + 1), πΆβ©}) |
wlkp1.s | β’ (π β (Vtxβπ) = π) |
Ref | Expression |
---|---|
wlkp1lem4 | β’ (π β (π β V β§ π» β V β§ π β V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . . 3 β’ (π β πΉ(WalksβπΊ)π) | |
2 | eqid 2732 | . . . . 5 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
3 | 2 | wlkf 28860 | . . . 4 β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
4 | eqid 2732 | . . . . 5 β’ (VtxβπΊ) = (VtxβπΊ) | |
5 | 4 | wlkp 28862 | . . . 4 β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
6 | 3, 5 | jca 512 | . . 3 β’ (πΉ(WalksβπΊ)π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) |
7 | 1, 6 | syl 17 | . 2 β’ (π β (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) |
8 | wlkp1.c | . . . . . 6 β’ (π β πΆ β π) | |
9 | wlkp1.s | . . . . . 6 β’ (π β (Vtxβπ) = π) | |
10 | 8, 9 | eleqtrrd 2836 | . . . . 5 β’ (π β πΆ β (Vtxβπ)) |
11 | 10 | elfvexd 6927 | . . . 4 β’ (π β π β V) |
12 | 11 | adantr 481 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β V) |
13 | wlkp1.h | . . . 4 β’ π» = (πΉ βͺ {β¨π, π΅β©}) | |
14 | simprl 769 | . . . . 5 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β πΉ β Word dom (iEdgβπΊ)) | |
15 | snex 5430 | . . . . 5 β’ {β¨π, π΅β©} β V | |
16 | unexg 7732 | . . . . 5 β’ ((πΉ β Word dom (iEdgβπΊ) β§ {β¨π, π΅β©} β V) β (πΉ βͺ {β¨π, π΅β©}) β V) | |
17 | 14, 15, 16 | sylancl 586 | . . . 4 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (πΉ βͺ {β¨π, π΅β©}) β V) |
18 | 13, 17 | eqeltrid 2837 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π» β V) |
19 | wlkp1.q | . . . 4 β’ π = (π βͺ {β¨(π + 1), πΆβ©}) | |
20 | ovex 7438 | . . . . . . 7 β’ (0...(β―βπΉ)) β V | |
21 | fvex 6901 | . . . . . . 7 β’ (VtxβπΊ) β V | |
22 | 20, 21 | fpm 8865 | . . . . . 6 β’ (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β π β ((VtxβπΊ) βpm (0...(β―βπΉ)))) |
23 | 22 | ad2antll 727 | . . . . 5 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β ((VtxβπΊ) βpm (0...(β―βπΉ)))) |
24 | snex 5430 | . . . . 5 β’ {β¨(π + 1), πΆβ©} β V | |
25 | unexg 7732 | . . . . 5 β’ ((π β ((VtxβπΊ) βpm (0...(β―βπΉ))) β§ {β¨(π + 1), πΆβ©} β V) β (π βͺ {β¨(π + 1), πΆβ©}) β V) | |
26 | 23, 24, 25 | sylancl 586 | . . . 4 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (π βͺ {β¨(π + 1), πΆβ©}) β V) |
27 | 19, 26 | eqeltrid 2837 | . . 3 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β π β V) |
28 | 12, 18, 27 | 3jca 1128 | . 2 β’ ((π β§ (πΉ β Word dom (iEdgβπΊ) β§ π:(0...(β―βπΉ))βΆ(VtxβπΊ))) β (π β V β§ π» β V β§ π β V)) |
29 | 7, 28 | mpdan 685 | 1 β’ (π β (π β V β§ π» β V β§ π β V)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3945 β wss 3947 {csn 4627 {cpr 4629 β¨cop 4633 class class class wbr 5147 dom cdm 5675 Fun wfun 6534 βΆwf 6536 βcfv 6540 (class class class)co 7405 βpm cpm 8817 Fincfn 8935 0cc0 11106 1c1 11107 + caddc 11109 ...cfz 13480 β―chash 14286 Word cword 14460 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 Walkscwlks 28842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-wlks 28845 |
This theorem is referenced by: wlkp1 28927 |
Copyright terms: Public domain | W3C validator |