![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version |
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
mapsspm | ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8143 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | simprd 491 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝐵 ∈ V) |
3 | 1 | simpld 490 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝐴 ∈ V) |
4 | elmapi 8144 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝑓:𝐵⟶𝐴) | |
5 | fpmg 8148 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
6 | 2, 3, 4, 5 | syl3anc 1494 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
7 | 6 | ssriv 3831 | 1 ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2164 Vcvv 3414 ⊆ wss 3798 ⟶wf 6119 (class class class)co 6905 ↑𝑚 cmap 8122 ↑pm cpm 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-map 8124 df-pm 8125 |
This theorem is referenced by: mapsspw 8158 wunmap 9863 dvntaylp 24524 taylthlem1 24526 taylthlem2 24527 mrsubrn 31945 mrsubff1 31946 msubrn 31961 msubff1 31988 |
Copyright terms: Public domain | W3C validator |