| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| mapsspm | ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8767 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐵 ∈ V) |
| 3 | 1 | simpld 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐴 ∈ V) |
| 4 | elmapi 8768 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓:𝐵⟶𝐴) | |
| 5 | fpmg 8787 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
| 7 | 6 | ssriv 3936 | 1 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 ⟶wf 6473 (class class class)co 7341 ↑m cmap 8745 ↑pm cpm 8746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-pm 8748 |
| This theorem is referenced by: mapsspw 8797 wunmap 10609 dvntaylp 26299 taylthlem1 26301 taylthlem2 26302 taylthlem2OLD 26303 mrsubrn 35525 mrsubff1 35526 msubrn 35541 msubff1 35568 |
| Copyright terms: Public domain | W3C validator |