MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspm Structured version   Visualization version   GIF version

Theorem mapsspm 8934
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8906 . . . 4 (𝑓 ∈ (𝐴m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 495 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐵 ∈ V)
31simpld 494 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐴 ∈ V)
4 elmapi 8907 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 8926 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1371 . 2 (𝑓 ∈ (𝐴m 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 4012 1 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  wss 3976  wf 6569  (class class class)co 7448  m cmap 8884  pm cpm 8885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-pm 8887
This theorem is referenced by:  mapsspw  8936  wunmap  10795  dvntaylp  26431  taylthlem1  26433  taylthlem2  26434  taylthlem2OLD  26435  mrsubrn  35481  mrsubff1  35482  msubrn  35497  msubff1  35524
  Copyright terms: Public domain W3C validator