MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspm Structured version   Visualization version   GIF version

Theorem mapsspm 8795
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8767 . . . 4 (𝑓 ∈ (𝐴m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 495 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐵 ∈ V)
31simpld 494 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐴 ∈ V)
4 elmapi 8768 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 8787 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1373 . 2 (𝑓 ∈ (𝐴m 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 3936 1 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  Vcvv 3434  wss 3900  wf 6473  (class class class)co 7341  m cmap 8745  pm cpm 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-pm 8748
This theorem is referenced by:  mapsspw  8797  wunmap  10609  dvntaylp  26299  taylthlem1  26301  taylthlem2  26302  taylthlem2OLD  26303  mrsubrn  35525  mrsubff1  35526  msubrn  35541  msubff1  35568
  Copyright terms: Public domain W3C validator