| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| mapsspm | ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8782 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐵 ∈ V) |
| 3 | 1 | simpld 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐴 ∈ V) |
| 4 | elmapi 8783 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓:𝐵⟶𝐴) | |
| 5 | fpmg 8802 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
| 7 | 6 | ssriv 3941 | 1 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ⟶wf 6482 (class class class)co 7353 ↑m cmap 8760 ↑pm cpm 8761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-pm 8763 |
| This theorem is referenced by: mapsspw 8812 wunmap 10639 dvntaylp 26295 taylthlem1 26297 taylthlem2 26298 taylthlem2OLD 26299 mrsubrn 35485 mrsubff1 35486 msubrn 35501 msubff1 35528 |
| Copyright terms: Public domain | W3C validator |