Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version |
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
mapsspm | ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8712 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | simprd 497 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐵 ∈ V) |
3 | 1 | simpld 496 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐴 ∈ V) |
4 | elmapi 8713 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓:𝐵⟶𝐴) | |
5 | fpmg 8732 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
7 | 6 | ssriv 3940 | 1 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3442 ⊆ wss 3902 ⟶wf 6480 (class class class)co 7342 ↑m cmap 8691 ↑pm cpm 8692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-map 8693 df-pm 8694 |
This theorem is referenced by: mapsspw 8742 wunmap 10588 dvntaylp 25636 taylthlem1 25638 taylthlem2 25639 mrsubrn 33772 mrsubff1 33773 msubrn 33788 msubff1 33815 |
Copyright terms: Public domain | W3C validator |