| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version | ||
| Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| mapsspm | ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8824 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐵 ∈ V) |
| 3 | 1 | simpld 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐴 ∈ V) |
| 4 | elmapi 8825 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓:𝐵⟶𝐴) | |
| 5 | fpmg 8844 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
| 7 | 6 | ssriv 3953 | 1 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 ↑pm cpm 8803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-pm 8805 |
| This theorem is referenced by: mapsspw 8854 wunmap 10686 dvntaylp 26286 taylthlem1 26288 taylthlem2 26289 taylthlem2OLD 26290 mrsubrn 35507 mrsubff1 35508 msubrn 35523 msubff1 35550 |
| Copyright terms: Public domain | W3C validator |