![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsspm | Structured version Visualization version GIF version |
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
mapsspm | ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8871 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | simprd 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐵 ∈ V) |
3 | 1 | simpld 493 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝐴 ∈ V) |
4 | elmapi 8872 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓:𝐵⟶𝐴) | |
5 | fpmg 8891 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵⟶𝐴) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) | |
6 | 2, 3, 4, 5 | syl3anc 1368 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) → 𝑓 ∈ (𝐴 ↑pm 𝐵)) |
7 | 6 | ssriv 3984 | 1 ⊢ (𝐴 ↑m 𝐵) ⊆ (𝐴 ↑pm 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3471 ⊆ wss 3947 ⟶wf 6547 (class class class)co 7424 ↑m cmap 8849 ↑pm cpm 8850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 7997 df-2nd 7998 df-map 8851 df-pm 8852 |
This theorem is referenced by: mapsspw 8901 wunmap 10755 dvntaylp 26324 taylthlem1 26326 taylthlem2 26327 taylthlem2OLD 26328 mrsubrn 35128 mrsubff1 35129 msubrn 35144 msubff1 35171 |
Copyright terms: Public domain | W3C validator |