MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspm Structured version   Visualization version   GIF version

Theorem mapsspm 8156
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8143 . . . 4 (𝑓 ∈ (𝐴𝑚 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 491 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐵 ∈ V)
31simpld 490 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝐴 ∈ V)
4 elmapi 8144 . . 3 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 8148 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1494 . 2 (𝑓 ∈ (𝐴𝑚 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 3831 1 (𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2164  Vcvv 3414  wss 3798  wf 6119  (class class class)co 6905  𝑚 cmap 8122  pm cpm 8123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-map 8124  df-pm 8125
This theorem is referenced by:  mapsspw  8158  wunmap  9863  dvntaylp  24524  taylthlem1  24526  taylthlem2  24527  mrsubrn  31945  mrsubff1  31946  msubrn  31961  msubff1  31988
  Copyright terms: Public domain W3C validator