MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspm Structured version   Visualization version   GIF version

Theorem mapsspm 8870
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)

Proof of Theorem mapsspm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8842 . . . 4 (𝑓 ∈ (𝐴m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simprd 497 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐵 ∈ V)
31simpld 496 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝐴 ∈ V)
4 elmapi 8843 . . 3 (𝑓 ∈ (𝐴m 𝐵) → 𝑓:𝐵𝐴)
5 fpmg 8862 . . 3 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝑓:𝐵𝐴) → 𝑓 ∈ (𝐴pm 𝐵))
62, 3, 4, 5syl3anc 1372 . 2 (𝑓 ∈ (𝐴m 𝐵) → 𝑓 ∈ (𝐴pm 𝐵))
76ssriv 3987 1 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475  wss 3949  wf 6540  (class class class)co 7409  m cmap 8820  pm cpm 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-pm 8823
This theorem is referenced by:  mapsspw  8872  wunmap  10721  dvntaylp  25883  taylthlem1  25885  taylthlem2  25886  mrsubrn  34504  mrsubff1  34505  msubrn  34520  msubff1  34547
  Copyright terms: Public domain W3C validator