MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2 Structured version   Visualization version   GIF version

Theorem elpm2 8738
Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
elpm2 (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Proof of Theorem elpm2
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 elpm2g 8708 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
41, 2, 3mp2an 690 1 (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2106  Vcvv 3442  wss 3902  dom cdm 5625  wf 6480  (class class class)co 7342  pm cpm 8692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-pm 8694
This theorem is referenced by:  rlimf  15310  rlimss  15311  lo1f  15327  lo1dm  15328  o1f  15338  o1dm  15339  coapm  17884  pmltpclem2  24719  mbff  24895  limcrcl  25144  dvnres  25201  c1liplem1  25266  c1lip2  25268  ulmf2  25649  elbigof  46316  elbigodm  46317  elbigoimp  46318
  Copyright terms: Public domain W3C validator