MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2 Structured version   Visualization version   GIF version

Theorem elpm2 8893
Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
elmap.1 𝐴 ∈ V
elmap.2 𝐵 ∈ V
Assertion
Ref Expression
elpm2 (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Proof of Theorem elpm2
StepHypRef Expression
1 elmap.1 . 2 𝐴 ∈ V
2 elmap.2 . 2 𝐵 ∈ V
3 elpm2g 8863 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
41, 2, 3mp2an 692 1 (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3464  wss 3931  dom cdm 5659  wf 6532  (class class class)co 7410  pm cpm 8846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-pm 8848
This theorem is referenced by:  rlimf  15522  rlimss  15523  lo1f  15539  lo1dm  15540  o1f  15550  o1dm  15551  coapm  18089  pmltpclem2  25407  mbff  25583  limcrcl  25832  dvnres  25890  c1liplem1  25958  c1lip2  25960  ulmf2  26350  elbigof  48501  elbigodm  48502  elbigoimp  48503
  Copyright terms: Public domain W3C validator