|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elpm2 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| elmap.1 | ⊢ 𝐴 ∈ V | 
| elmap.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| elpm2 | ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elmap.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elmap.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | elpm2g 8885 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 dom cdm 5684 ⟶wf 6556 (class class class)co 7432 ↑pm cpm 8868 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-pm 8870 | 
| This theorem is referenced by: rlimf 15538 rlimss 15539 lo1f 15555 lo1dm 15556 o1f 15566 o1dm 15567 coapm 18117 pmltpclem2 25485 mbff 25661 limcrcl 25910 dvnres 25968 c1liplem1 26036 c1lip2 26038 ulmf2 26428 elbigof 48480 elbigodm 48481 elbigoimp 48482 | 
| Copyright terms: Public domain | W3C validator |