Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpm2 | Structured version Visualization version GIF version |
Description: The predicate "is a partial function". (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
elmap.1 | ⊢ 𝐴 ∈ V |
elmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpm2 | ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmap.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elmap.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | elpm2g 8632 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 dom cdm 5589 ⟶wf 6429 (class class class)co 7275 ↑pm cpm 8616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 |
This theorem is referenced by: rlimf 15210 rlimss 15211 lo1f 15227 lo1dm 15228 o1f 15238 o1dm 15239 coapm 17786 pmltpclem2 24613 mbff 24789 limcrcl 25038 dvnres 25095 c1liplem1 25160 c1lip2 25162 ulmf2 25543 elbigof 45900 elbigodm 45901 elbigoimp 45902 |
Copyright terms: Public domain | W3C validator |