Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version |
Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliprv | ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.th | . . . . . 6 ⊢ 𝐻 ≠ 𝑇 | |
2 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
3 | coinflip.t | . . . . . . 7 ⊢ 𝑇 ∈ V | |
4 | 1ex 11017 | . . . . . . 7 ⊢ 1 ∈ V | |
5 | c0ex 11015 | . . . . . . 7 ⊢ 0 ∈ V | |
6 | 2, 3, 4, 5 | fpr 7058 | . . . . . 6 ⊢ (𝐻 ≠ 𝑇 → {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0} |
8 | coinflip.3 | . . . . . 6 ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} | |
9 | 8 | feq1i 6621 | . . . . 5 ⊢ (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ 𝑋:{𝐻, 𝑇}⟶{1, 0} |
11 | coinflip.2 | . . . . . 6 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
12 | 2, 3, 1, 11, 8 | coinflipuniv 32493 | . . . . 5 ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} |
13 | 12 | feq2i 6622 | . . . 4 ⊢ (𝑋:∪ dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0}) |
14 | 10, 13 | mpbir 230 | . . 3 ⊢ 𝑋:∪ dom 𝑃⟶{1, 0} |
15 | 1re 11021 | . . . . 5 ⊢ 1 ∈ ℝ | |
16 | 0re 11023 | . . . . 5 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | pm3.2i 472 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 ∈ ℝ) |
18 | 4, 5 | prss 4759 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ) |
19 | 17, 18 | mpbi 229 | . . 3 ⊢ {1, 0} ⊆ ℝ |
20 | fss 6647 | . . 3 ⊢ ((𝑋:∪ dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋:∪ dom 𝑃⟶ℝ) | |
21 | 14, 19, 20 | mp2an 690 | . 2 ⊢ 𝑋:∪ dom 𝑃⟶ℝ |
22 | imassrn 5990 | . . . . 5 ⊢ (◡𝑋 “ 𝑦) ⊆ ran ◡𝑋 | |
23 | dfdm4 5817 | . . . . . 6 ⊢ dom 𝑋 = ran ◡𝑋 | |
24 | 10 | fdmi 6642 | . . . . . 6 ⊢ dom 𝑋 = {𝐻, 𝑇} |
25 | 23, 24 | eqtr3i 2766 | . . . . 5 ⊢ ran ◡𝑋 = {𝐻, 𝑇} |
26 | 22, 25 | sseqtri 3962 | . . . 4 ⊢ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} |
27 | 2, 3, 1, 11, 8 | coinflipspace 32492 | . . . . . . 7 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
28 | 27 | eleq2i 2828 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇}) |
29 | prex 5364 | . . . . . . . . 9 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉} ∈ V | |
30 | 8, 29 | eqeltri 2833 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
31 | cnvexg 7803 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ◡𝑋 ∈ V) | |
32 | imaexg 7794 | . . . . . . . 8 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ 𝑦) ∈ V) | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 ⊢ (◡𝑋 “ 𝑦) ∈ V |
34 | 33 | elpw 4543 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇}) |
35 | 28, 34 | bitr2i 276 | . . . . 5 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
36 | 35 | biimpi 215 | . . . 4 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
37 | 26, 36 | mp1i 13 | . . 3 ⊢ (𝑦 ∈ 𝔅ℝ → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
38 | 37 | rgen 3064 | . 2 ⊢ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃 |
39 | 2, 3, 1, 11, 8 | coinflipprob 32491 | . . . . 5 ⊢ 𝑃 ∈ Prob |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝑃 ∈ Prob) |
41 | 40 | isrrvv 32455 | . . 3 ⊢ (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
42 | 2, 41 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
43 | 21, 38, 42 | mpbir2an 709 | 1 ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 {cpr 4567 〈cop 4571 ∪ cuni 4844 ◡ccnv 5599 dom cdm 5600 ran crn 5601 ↾ cres 5602 “ cima 5603 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 / cdiv 11678 2c2 12074 ♯chash 14090 ∘f/c cofc 32108 𝔅ℝcbrsiga 32194 Probcprb 32419 rRndVarcrrv 32452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-disj 5047 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-xnn0 12352 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-ordt 17257 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-ps 18329 df-tsr 18330 df-plusf 18370 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-cring 19831 df-subrg 20067 df-abv 20122 df-lmod 20170 df-scaf 20171 df-sra 20479 df-rgmod 20480 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-tmd 23268 df-tgp 23269 df-tsms 23323 df-trg 23356 df-xms 23518 df-ms 23519 df-tms 23520 df-nm 23783 df-ngp 23784 df-nrg 23786 df-nlm 23787 df-ii 24085 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 df-xdiv 31237 df-esum 32041 df-ofc 32109 df-siga 32122 df-sigagen 32152 df-brsiga 32195 df-meas 32209 df-mbfm 32263 df-prob 32420 df-rrv 32453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |