Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version |
Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliprv | ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.th | . . . . . 6 ⊢ 𝐻 ≠ 𝑇 | |
2 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
3 | coinflip.t | . . . . . . 7 ⊢ 𝑇 ∈ V | |
4 | 1ex 11073 | . . . . . . 7 ⊢ 1 ∈ V | |
5 | c0ex 11071 | . . . . . . 7 ⊢ 0 ∈ V | |
6 | 2, 3, 4, 5 | fpr 7083 | . . . . . 6 ⊢ (𝐻 ≠ 𝑇 → {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0} |
8 | coinflip.3 | . . . . . 6 ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} | |
9 | 8 | feq1i 6643 | . . . . 5 ⊢ (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ 𝑋:{𝐻, 𝑇}⟶{1, 0} |
11 | coinflip.2 | . . . . . 6 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
12 | 2, 3, 1, 11, 8 | coinflipuniv 32748 | . . . . 5 ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} |
13 | 12 | feq2i 6644 | . . . 4 ⊢ (𝑋:∪ dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0}) |
14 | 10, 13 | mpbir 230 | . . 3 ⊢ 𝑋:∪ dom 𝑃⟶{1, 0} |
15 | 1re 11077 | . . . . 5 ⊢ 1 ∈ ℝ | |
16 | 0re 11079 | . . . . 5 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | pm3.2i 471 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 ∈ ℝ) |
18 | 4, 5 | prss 4768 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ) |
19 | 17, 18 | mpbi 229 | . . 3 ⊢ {1, 0} ⊆ ℝ |
20 | fss 6669 | . . 3 ⊢ ((𝑋:∪ dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋:∪ dom 𝑃⟶ℝ) | |
21 | 14, 19, 20 | mp2an 689 | . 2 ⊢ 𝑋:∪ dom 𝑃⟶ℝ |
22 | imassrn 6011 | . . . . 5 ⊢ (◡𝑋 “ 𝑦) ⊆ ran ◡𝑋 | |
23 | dfdm4 5838 | . . . . . 6 ⊢ dom 𝑋 = ran ◡𝑋 | |
24 | 10 | fdmi 6664 | . . . . . 6 ⊢ dom 𝑋 = {𝐻, 𝑇} |
25 | 23, 24 | eqtr3i 2766 | . . . . 5 ⊢ ran ◡𝑋 = {𝐻, 𝑇} |
26 | 22, 25 | sseqtri 3968 | . . . 4 ⊢ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} |
27 | 2, 3, 1, 11, 8 | coinflipspace 32747 | . . . . . . 7 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
28 | 27 | eleq2i 2828 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇}) |
29 | prex 5378 | . . . . . . . . 9 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉} ∈ V | |
30 | 8, 29 | eqeltri 2833 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
31 | cnvexg 7840 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ◡𝑋 ∈ V) | |
32 | imaexg 7831 | . . . . . . . 8 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ 𝑦) ∈ V) | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 ⊢ (◡𝑋 “ 𝑦) ∈ V |
34 | 33 | elpw 4552 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇}) |
35 | 28, 34 | bitr2i 275 | . . . . 5 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
36 | 35 | biimpi 215 | . . . 4 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
37 | 26, 36 | mp1i 13 | . . 3 ⊢ (𝑦 ∈ 𝔅ℝ → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
38 | 37 | rgen 3063 | . 2 ⊢ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃 |
39 | 2, 3, 1, 11, 8 | coinflipprob 32746 | . . . . 5 ⊢ 𝑃 ∈ Prob |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝑃 ∈ Prob) |
41 | 40 | isrrvv 32710 | . . 3 ⊢ (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
42 | 2, 41 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
43 | 21, 38, 42 | mpbir2an 708 | 1 ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 Vcvv 3441 ⊆ wss 3898 𝒫 cpw 4548 {cpr 4576 〈cop 4580 ∪ cuni 4853 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ↾ cres 5623 “ cima 5624 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ℝcr 10972 0cc0 10973 1c1 10974 / cdiv 11734 2c2 12130 ♯chash 14146 ∘f/c cofc 32361 𝔅ℝcbrsiga 32447 Probcprb 32674 rRndVarcrrv 32707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 ax-addf 11052 ax-mulf 11053 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-disj 5059 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-oadd 8372 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-fi 9269 df-sup 9300 df-inf 9301 df-oi 9368 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-xnn0 12408 df-z 12422 df-dec 12540 df-uz 12685 df-q 12791 df-rp 12833 df-xneg 12950 df-xadd 12951 df-xmul 12952 df-ioo 13185 df-ioc 13186 df-ico 13187 df-icc 13188 df-fz 13342 df-fzo 13485 df-fl 13614 df-mod 13692 df-seq 13824 df-exp 13885 df-fac 14090 df-bc 14119 df-hash 14147 df-shft 14878 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 df-ef 15877 df-sin 15879 df-cos 15880 df-pi 15882 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-ordt 17310 df-xrs 17311 df-qtop 17316 df-imas 17317 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-ps 18382 df-tsr 18383 df-plusf 18423 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-cring 19882 df-subrg 20128 df-abv 20184 df-lmod 20232 df-scaf 20233 df-sra 20541 df-rgmod 20542 df-psmet 20696 df-xmet 20697 df-met 20698 df-bl 20699 df-mopn 20700 df-fbas 20701 df-fg 20702 df-cnfld 20705 df-top 22150 df-topon 22167 df-topsp 22189 df-bases 22203 df-cld 22277 df-ntr 22278 df-cls 22279 df-nei 22356 df-lp 22394 df-perf 22395 df-cn 22485 df-cnp 22486 df-haus 22573 df-tx 22820 df-hmeo 23013 df-fil 23104 df-fm 23196 df-flim 23197 df-flf 23198 df-tmd 23330 df-tgp 23331 df-tsms 23385 df-trg 23418 df-xms 23580 df-ms 23581 df-tms 23582 df-nm 23845 df-ngp 23846 df-nrg 23848 df-nlm 23849 df-ii 24147 df-cncf 24148 df-limc 25137 df-dv 25138 df-log 25819 df-xdiv 31479 df-esum 32294 df-ofc 32362 df-siga 32375 df-sigagen 32405 df-brsiga 32448 df-meas 32462 df-mbfm 32516 df-prob 32675 df-rrv 32708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |