Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version |
Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⊢ 𝐻 ∈ V |
coinflip.t | ⊢ 𝑇 ∈ V |
coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
Ref | Expression |
---|---|
coinfliprv | ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.th | . . . . . 6 ⊢ 𝐻 ≠ 𝑇 | |
2 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
3 | coinflip.t | . . . . . . 7 ⊢ 𝑇 ∈ V | |
4 | 1ex 10829 | . . . . . . 7 ⊢ 1 ∈ V | |
5 | c0ex 10827 | . . . . . . 7 ⊢ 0 ∈ V | |
6 | 2, 3, 4, 5 | fpr 6969 | . . . . . 6 ⊢ (𝐻 ≠ 𝑇 → {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0} |
8 | coinflip.3 | . . . . . 6 ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} | |
9 | 8 | feq1i 6536 | . . . . 5 ⊢ (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
10 | 7, 9 | mpbir 234 | . . . 4 ⊢ 𝑋:{𝐻, 𝑇}⟶{1, 0} |
11 | coinflip.2 | . . . . . 6 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
12 | 2, 3, 1, 11, 8 | coinflipuniv 32160 | . . . . 5 ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} |
13 | 12 | feq2i 6537 | . . . 4 ⊢ (𝑋:∪ dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0}) |
14 | 10, 13 | mpbir 234 | . . 3 ⊢ 𝑋:∪ dom 𝑃⟶{1, 0} |
15 | 1re 10833 | . . . . 5 ⊢ 1 ∈ ℝ | |
16 | 0re 10835 | . . . . 5 ⊢ 0 ∈ ℝ | |
17 | 15, 16 | pm3.2i 474 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 ∈ ℝ) |
18 | 4, 5 | prss 4733 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ) |
19 | 17, 18 | mpbi 233 | . . 3 ⊢ {1, 0} ⊆ ℝ |
20 | fss 6562 | . . 3 ⊢ ((𝑋:∪ dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋:∪ dom 𝑃⟶ℝ) | |
21 | 14, 19, 20 | mp2an 692 | . 2 ⊢ 𝑋:∪ dom 𝑃⟶ℝ |
22 | imassrn 5940 | . . . . 5 ⊢ (◡𝑋 “ 𝑦) ⊆ ran ◡𝑋 | |
23 | dfdm4 5764 | . . . . . 6 ⊢ dom 𝑋 = ran ◡𝑋 | |
24 | 10 | fdmi 6557 | . . . . . 6 ⊢ dom 𝑋 = {𝐻, 𝑇} |
25 | 23, 24 | eqtr3i 2767 | . . . . 5 ⊢ ran ◡𝑋 = {𝐻, 𝑇} |
26 | 22, 25 | sseqtri 3937 | . . . 4 ⊢ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} |
27 | 2, 3, 1, 11, 8 | coinflipspace 32159 | . . . . . . 7 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
28 | 27 | eleq2i 2829 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇}) |
29 | prex 5325 | . . . . . . . . 9 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉} ∈ V | |
30 | 8, 29 | eqeltri 2834 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
31 | cnvexg 7702 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ◡𝑋 ∈ V) | |
32 | imaexg 7693 | . . . . . . . 8 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ 𝑦) ∈ V) | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 ⊢ (◡𝑋 “ 𝑦) ∈ V |
34 | 33 | elpw 4517 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇}) |
35 | 28, 34 | bitr2i 279 | . . . . 5 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
36 | 35 | biimpi 219 | . . . 4 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
37 | 26, 36 | mp1i 13 | . . 3 ⊢ (𝑦 ∈ 𝔅ℝ → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
38 | 37 | rgen 3071 | . 2 ⊢ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃 |
39 | 2, 3, 1, 11, 8 | coinflipprob 32158 | . . . . 5 ⊢ 𝑃 ∈ Prob |
40 | 39 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝑃 ∈ Prob) |
41 | 40 | isrrvv 32122 | . . 3 ⊢ (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
42 | 2, 41 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
43 | 21, 38, 42 | mpbir2an 711 | 1 ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 Vcvv 3408 ⊆ wss 3866 𝒫 cpw 4513 {cpr 4543 〈cop 4547 ∪ cuni 4819 ◡ccnv 5550 dom cdm 5551 ran crn 5552 ↾ cres 5553 “ cima 5554 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 / cdiv 11489 2c2 11885 ♯chash 13896 ∘f/c cofc 31775 𝔅ℝcbrsiga 31861 Probcprb 32086 rRndVarcrrv 32119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-disj 5019 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-fac 13840 df-bc 13869 df-hash 13897 df-shft 14630 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-limsup 15032 df-clim 15049 df-rlim 15050 df-sum 15250 df-ef 15629 df-sin 15631 df-cos 15632 df-pi 15634 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-ordt 17006 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-ps 18072 df-tsr 18073 df-plusf 18113 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mulg 18489 df-subg 18540 df-cntz 18711 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-subrg 19798 df-abv 19853 df-lmod 19901 df-scaf 19902 df-sra 20209 df-rgmod 20210 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-lp 22033 df-perf 22034 df-cn 22124 df-cnp 22125 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-tmd 22969 df-tgp 22970 df-tsms 23024 df-trg 23057 df-xms 23218 df-ms 23219 df-tms 23220 df-nm 23480 df-ngp 23481 df-nrg 23483 df-nlm 23484 df-ii 23774 df-cncf 23775 df-limc 24763 df-dv 24764 df-log 25445 df-xdiv 30912 df-esum 31708 df-ofc 31776 df-siga 31789 df-sigagen 31819 df-brsiga 31862 df-meas 31876 df-mbfm 31930 df-prob 32087 df-rrv 32120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |