Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinfliprv Structured version   Visualization version   GIF version

Theorem coinfliprv 32161
Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinfliprv 𝑋 ∈ (rRndVar‘𝑃)

Proof of Theorem coinfliprv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coinflip.th . . . . . 6 𝐻𝑇
2 coinflip.h . . . . . . 7 𝐻 ∈ V
3 coinflip.t . . . . . . 7 𝑇 ∈ V
4 1ex 10829 . . . . . . 7 1 ∈ V
5 c0ex 10827 . . . . . . 7 0 ∈ V
62, 3, 4, 5fpr 6969 . . . . . 6 (𝐻𝑇 → {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}:{𝐻, 𝑇}⟶{1, 0})
71, 6ax-mp 5 . . . . 5 {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}:{𝐻, 𝑇}⟶{1, 0}
8 coinflip.3 . . . . . 6 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
98feq1i 6536 . . . . 5 (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}:{𝐻, 𝑇}⟶{1, 0})
107, 9mpbir 234 . . . 4 𝑋:{𝐻, 𝑇}⟶{1, 0}
11 coinflip.2 . . . . . 6 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
122, 3, 1, 11, 8coinflipuniv 32160 . . . . 5 dom 𝑃 = {𝐻, 𝑇}
1312feq2i 6537 . . . 4 (𝑋: dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0})
1410, 13mpbir 234 . . 3 𝑋: dom 𝑃⟶{1, 0}
15 1re 10833 . . . . 5 1 ∈ ℝ
16 0re 10835 . . . . 5 0 ∈ ℝ
1715, 16pm3.2i 474 . . . 4 (1 ∈ ℝ ∧ 0 ∈ ℝ)
184, 5prss 4733 . . . 4 ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ)
1917, 18mpbi 233 . . 3 {1, 0} ⊆ ℝ
20 fss 6562 . . 3 ((𝑋: dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋: dom 𝑃⟶ℝ)
2114, 19, 20mp2an 692 . 2 𝑋: dom 𝑃⟶ℝ
22 imassrn 5940 . . . . 5 (𝑋𝑦) ⊆ ran 𝑋
23 dfdm4 5764 . . . . . 6 dom 𝑋 = ran 𝑋
2410fdmi 6557 . . . . . 6 dom 𝑋 = {𝐻, 𝑇}
2523, 24eqtr3i 2767 . . . . 5 ran 𝑋 = {𝐻, 𝑇}
2622, 25sseqtri 3937 . . . 4 (𝑋𝑦) ⊆ {𝐻, 𝑇}
272, 3, 1, 11, 8coinflipspace 32159 . . . . . . 7 dom 𝑃 = 𝒫 {𝐻, 𝑇}
2827eleq2i 2829 . . . . . 6 ((𝑋𝑦) ∈ dom 𝑃 ↔ (𝑋𝑦) ∈ 𝒫 {𝐻, 𝑇})
29 prex 5325 . . . . . . . . 9 {⟨𝐻, 1⟩, ⟨𝑇, 0⟩} ∈ V
308, 29eqeltri 2834 . . . . . . . 8 𝑋 ∈ V
31 cnvexg 7702 . . . . . . . 8 (𝑋 ∈ V → 𝑋 ∈ V)
32 imaexg 7693 . . . . . . . 8 (𝑋 ∈ V → (𝑋𝑦) ∈ V)
3330, 31, 32mp2b 10 . . . . . . 7 (𝑋𝑦) ∈ V
3433elpw 4517 . . . . . 6 ((𝑋𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (𝑋𝑦) ⊆ {𝐻, 𝑇})
3528, 34bitr2i 279 . . . . 5 ((𝑋𝑦) ⊆ {𝐻, 𝑇} ↔ (𝑋𝑦) ∈ dom 𝑃)
3635biimpi 219 . . . 4 ((𝑋𝑦) ⊆ {𝐻, 𝑇} → (𝑋𝑦) ∈ dom 𝑃)
3726, 36mp1i 13 . . 3 (𝑦 ∈ 𝔅 → (𝑋𝑦) ∈ dom 𝑃)
3837rgen 3071 . 2 𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃
392, 3, 1, 11, 8coinflipprob 32158 . . . . 5 𝑃 ∈ Prob
4039a1i 11 . . . 4 (𝐻 ∈ V → 𝑃 ∈ Prob)
4140isrrvv 32122 . . 3 (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
422, 41ax-mp 5 . 2 (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃))
4321, 38, 42mpbir2an 711 1 𝑋 ∈ (rRndVar‘𝑃)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408  wss 3866  𝒫 cpw 4513  {cpr 4543  cop 4547   cuni 4819  ccnv 5550  dom cdm 5551  ran crn 5552  cres 5553  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   / cdiv 11489  2c2 11885  chash 13896  f/c cofc 31775  𝔅cbrsiga 31861  Probcprb 32086  rRndVarcrrv 32119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-xnn0 12163  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-ordt 17006  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-ps 18072  df-tsr 18073  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-subrg 19798  df-abv 19853  df-lmod 19901  df-scaf 19902  df-sra 20209  df-rgmod 20210  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-tmd 22969  df-tgp 22970  df-tsms 23024  df-trg 23057  df-xms 23218  df-ms 23219  df-tms 23220  df-nm 23480  df-ngp 23481  df-nrg 23483  df-nlm 23484  df-ii 23774  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-xdiv 30912  df-esum 31708  df-ofc 31776  df-siga 31789  df-sigagen 31819  df-brsiga 31862  df-meas 31876  df-mbfm 31930  df-prob 32087  df-rrv 32120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator