![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version |
Description: The π we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | β’ π» β V |
coinflip.t | β’ π β V |
coinflip.th | β’ π» β π |
coinflip.2 | β’ π = ((β― βΎ π« {π», π}) βf/c / 2) |
coinflip.3 | β’ π = {β¨π», 1β©, β¨π, 0β©} |
Ref | Expression |
---|---|
coinfliprv | β’ π β (rRndVarβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.th | . . . . . 6 β’ π» β π | |
2 | coinflip.h | . . . . . . 7 β’ π» β V | |
3 | coinflip.t | . . . . . . 7 β’ π β V | |
4 | 1ex 11215 | . . . . . . 7 β’ 1 β V | |
5 | c0ex 11213 | . . . . . . 7 β’ 0 β V | |
6 | 2, 3, 4, 5 | fpr 7154 | . . . . . 6 β’ (π» β π β {β¨π», 1β©, β¨π, 0β©}:{π», π}βΆ{1, 0}) |
7 | 1, 6 | ax-mp 5 | . . . . 5 β’ {β¨π», 1β©, β¨π, 0β©}:{π», π}βΆ{1, 0} |
8 | coinflip.3 | . . . . . 6 β’ π = {β¨π», 1β©, β¨π, 0β©} | |
9 | 8 | feq1i 6708 | . . . . 5 β’ (π:{π», π}βΆ{1, 0} β {β¨π», 1β©, β¨π, 0β©}:{π», π}βΆ{1, 0}) |
10 | 7, 9 | mpbir 230 | . . . 4 β’ π:{π», π}βΆ{1, 0} |
11 | coinflip.2 | . . . . . 6 β’ π = ((β― βΎ π« {π», π}) βf/c / 2) | |
12 | 2, 3, 1, 11, 8 | coinflipuniv 33779 | . . . . 5 β’ βͺ dom π = {π», π} |
13 | 12 | feq2i 6709 | . . . 4 β’ (π:βͺ dom πβΆ{1, 0} β π:{π», π}βΆ{1, 0}) |
14 | 10, 13 | mpbir 230 | . . 3 β’ π:βͺ dom πβΆ{1, 0} |
15 | 1re 11219 | . . . . 5 β’ 1 β β | |
16 | 0re 11221 | . . . . 5 β’ 0 β β | |
17 | 15, 16 | pm3.2i 470 | . . . 4 β’ (1 β β β§ 0 β β) |
18 | 4, 5 | prss 4823 | . . . 4 β’ ((1 β β β§ 0 β β) β {1, 0} β β) |
19 | 17, 18 | mpbi 229 | . . 3 β’ {1, 0} β β |
20 | fss 6734 | . . 3 β’ ((π:βͺ dom πβΆ{1, 0} β§ {1, 0} β β) β π:βͺ dom πβΆβ) | |
21 | 14, 19, 20 | mp2an 689 | . 2 β’ π:βͺ dom πβΆβ |
22 | imassrn 6070 | . . . . 5 β’ (β‘π β π¦) β ran β‘π | |
23 | dfdm4 5895 | . . . . . 6 β’ dom π = ran β‘π | |
24 | 10 | fdmi 6729 | . . . . . 6 β’ dom π = {π», π} |
25 | 23, 24 | eqtr3i 2761 | . . . . 5 β’ ran β‘π = {π», π} |
26 | 22, 25 | sseqtri 4018 | . . . 4 β’ (β‘π β π¦) β {π», π} |
27 | 2, 3, 1, 11, 8 | coinflipspace 33778 | . . . . . . 7 β’ dom π = π« {π», π} |
28 | 27 | eleq2i 2824 | . . . . . 6 β’ ((β‘π β π¦) β dom π β (β‘π β π¦) β π« {π», π}) |
29 | prex 5432 | . . . . . . . . 9 β’ {β¨π», 1β©, β¨π, 0β©} β V | |
30 | 8, 29 | eqeltri 2828 | . . . . . . . 8 β’ π β V |
31 | cnvexg 7919 | . . . . . . . 8 β’ (π β V β β‘π β V) | |
32 | imaexg 7910 | . . . . . . . 8 β’ (β‘π β V β (β‘π β π¦) β V) | |
33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 β’ (β‘π β π¦) β V |
34 | 33 | elpw 4606 | . . . . . 6 β’ ((β‘π β π¦) β π« {π», π} β (β‘π β π¦) β {π», π}) |
35 | 28, 34 | bitr2i 276 | . . . . 5 β’ ((β‘π β π¦) β {π», π} β (β‘π β π¦) β dom π) |
36 | 35 | biimpi 215 | . . . 4 β’ ((β‘π β π¦) β {π», π} β (β‘π β π¦) β dom π) |
37 | 26, 36 | mp1i 13 | . . 3 β’ (π¦ β π β β (β‘π β π¦) β dom π) |
38 | 37 | rgen 3062 | . 2 β’ βπ¦ β π β (β‘π β π¦) β dom π |
39 | 2, 3, 1, 11, 8 | coinflipprob 33777 | . . . . 5 β’ π β Prob |
40 | 39 | a1i 11 | . . . 4 β’ (π» β V β π β Prob) |
41 | 40 | isrrvv 33741 | . . 3 β’ (π» β V β (π β (rRndVarβπ) β (π:βͺ dom πβΆβ β§ βπ¦ β π β (β‘π β π¦) β dom π))) |
42 | 2, 41 | ax-mp 5 | . 2 β’ (π β (rRndVarβπ) β (π:βͺ dom πβΆβ β§ βπ¦ β π β (β‘π β π¦) β dom π)) |
43 | 21, 38, 42 | mpbir2an 708 | 1 β’ π β (rRndVarβπ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 Vcvv 3473 β wss 3948 π« cpw 4602 {cpr 4630 β¨cop 4634 βͺ cuni 4908 β‘ccnv 5675 dom cdm 5676 ran crn 5677 βΎ cres 5678 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7412 βcr 11113 0cc0 11114 1c1 11115 / cdiv 11876 2c2 12272 β―chash 14295 βf/c cofc 33392 π βcbrsiga 33478 Probcprb 33705 rRndVarcrrv 33738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-oadd 8474 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ioc 13334 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15019 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-ef 16016 df-sin 16018 df-cos 16019 df-pi 16021 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-ordt 17452 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-ps 18524 df-tsr 18525 df-plusf 18565 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-subrng 20435 df-subrg 20460 df-abv 20569 df-lmod 20617 df-scaf 20618 df-sra 20931 df-rgmod 20932 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lp 22861 df-perf 22862 df-cn 22952 df-cnp 22953 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-tmd 23797 df-tgp 23798 df-tsms 23852 df-trg 23885 df-xms 24047 df-ms 24048 df-tms 24049 df-nm 24312 df-ngp 24313 df-nrg 24315 df-nlm 24316 df-ii 24618 df-cncf 24619 df-limc 25616 df-dv 25617 df-log 26302 df-xdiv 32352 df-esum 33325 df-ofc 33393 df-siga 33406 df-sigagen 33436 df-brsiga 33479 df-meas 33493 df-mbfm 33547 df-prob 33706 df-rrv 33739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |