| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coinfliprv | Structured version Visualization version GIF version | ||
| Description: The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| coinflip.h | ⊢ 𝐻 ∈ V |
| coinflip.t | ⊢ 𝑇 ∈ V |
| coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
| coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
| Ref | Expression |
|---|---|
| coinfliprv | ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coinflip.th | . . . . . 6 ⊢ 𝐻 ≠ 𝑇 | |
| 2 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
| 3 | coinflip.t | . . . . . . 7 ⊢ 𝑇 ∈ V | |
| 4 | 1ex 11108 | . . . . . . 7 ⊢ 1 ∈ V | |
| 5 | c0ex 11106 | . . . . . . 7 ⊢ 0 ∈ V | |
| 6 | 2, 3, 4, 5 | fpr 7087 | . . . . . 6 ⊢ (𝐻 ≠ 𝑇 → {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
| 7 | 1, 6 | ax-mp 5 | . . . . 5 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0} |
| 8 | coinflip.3 | . . . . . 6 ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} | |
| 9 | 8 | feq1i 6642 | . . . . 5 ⊢ (𝑋:{𝐻, 𝑇}⟶{1, 0} ↔ {〈𝐻, 1〉, 〈𝑇, 0〉}:{𝐻, 𝑇}⟶{1, 0}) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ 𝑋:{𝐻, 𝑇}⟶{1, 0} |
| 11 | coinflip.2 | . . . . . 6 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
| 12 | 2, 3, 1, 11, 8 | coinflipuniv 34495 | . . . . 5 ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} |
| 13 | 12 | feq2i 6643 | . . . 4 ⊢ (𝑋:∪ dom 𝑃⟶{1, 0} ↔ 𝑋:{𝐻, 𝑇}⟶{1, 0}) |
| 14 | 10, 13 | mpbir 231 | . . 3 ⊢ 𝑋:∪ dom 𝑃⟶{1, 0} |
| 15 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 16 | 0re 11114 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 17 | 15, 16 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℝ ∧ 0 ∈ ℝ) |
| 18 | 4, 5 | prss 4769 | . . . 4 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ) ↔ {1, 0} ⊆ ℝ) |
| 19 | 17, 18 | mpbi 230 | . . 3 ⊢ {1, 0} ⊆ ℝ |
| 20 | fss 6667 | . . 3 ⊢ ((𝑋:∪ dom 𝑃⟶{1, 0} ∧ {1, 0} ⊆ ℝ) → 𝑋:∪ dom 𝑃⟶ℝ) | |
| 21 | 14, 19, 20 | mp2an 692 | . 2 ⊢ 𝑋:∪ dom 𝑃⟶ℝ |
| 22 | imassrn 6019 | . . . . 5 ⊢ (◡𝑋 “ 𝑦) ⊆ ran ◡𝑋 | |
| 23 | dfdm4 5834 | . . . . . 6 ⊢ dom 𝑋 = ran ◡𝑋 | |
| 24 | 10 | fdmi 6662 | . . . . . 6 ⊢ dom 𝑋 = {𝐻, 𝑇} |
| 25 | 23, 24 | eqtr3i 2756 | . . . . 5 ⊢ ran ◡𝑋 = {𝐻, 𝑇} |
| 26 | 22, 25 | sseqtri 3978 | . . . 4 ⊢ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} |
| 27 | 2, 3, 1, 11, 8 | coinflipspace 34494 | . . . . . . 7 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
| 28 | 27 | eleq2i 2823 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇}) |
| 29 | prex 5373 | . . . . . . . . 9 ⊢ {〈𝐻, 1〉, 〈𝑇, 0〉} ∈ V | |
| 30 | 8, 29 | eqeltri 2827 | . . . . . . . 8 ⊢ 𝑋 ∈ V |
| 31 | cnvexg 7854 | . . . . . . . 8 ⊢ (𝑋 ∈ V → ◡𝑋 ∈ V) | |
| 32 | imaexg 7843 | . . . . . . . 8 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ 𝑦) ∈ V) | |
| 33 | 30, 31, 32 | mp2b 10 | . . . . . . 7 ⊢ (◡𝑋 “ 𝑦) ∈ V |
| 34 | 33 | elpw 4551 | . . . . . 6 ⊢ ((◡𝑋 “ 𝑦) ∈ 𝒫 {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇}) |
| 35 | 28, 34 | bitr2i 276 | . . . . 5 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} ↔ (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
| 36 | 35 | biimpi 216 | . . . 4 ⊢ ((◡𝑋 “ 𝑦) ⊆ {𝐻, 𝑇} → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
| 37 | 26, 36 | mp1i 13 | . . 3 ⊢ (𝑦 ∈ 𝔅ℝ → (◡𝑋 “ 𝑦) ∈ dom 𝑃) |
| 38 | 37 | rgen 3049 | . 2 ⊢ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃 |
| 39 | 2, 3, 1, 11, 8 | coinflipprob 34493 | . . . . 5 ⊢ 𝑃 ∈ Prob |
| 40 | 39 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 𝑃 ∈ Prob) |
| 41 | 40 | isrrvv 34456 | . . 3 ⊢ (𝐻 ∈ V → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 42 | 2, 41 | ax-mp 5 | . 2 ⊢ (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃)) |
| 43 | 21, 38, 42 | mpbir2an 711 | 1 ⊢ 𝑋 ∈ (rRndVar‘𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 {cpr 4575 〈cop 4579 ∪ cuni 4856 ◡ccnv 5613 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 / cdiv 11774 2c2 12180 ♯chash 14237 ∘f/c cofc 34108 𝔅ℝcbrsiga 34194 Probcprb 34420 rRndVarcrrv 34453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20795 df-scaf 20796 df-sra 21107 df-rgmod 21108 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tmd 23987 df-tgp 23988 df-tsms 24042 df-trg 24075 df-xms 24235 df-ms 24236 df-tms 24237 df-nm 24497 df-ngp 24498 df-nrg 24500 df-nlm 24501 df-ii 24797 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-xdiv 32898 df-esum 34041 df-ofc 34109 df-siga 34122 df-sigagen 34152 df-brsiga 34195 df-meas 34209 df-mbfm 34263 df-prob 34421 df-rrv 34454 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |