![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem4 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28746. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem4.1 | β’ π΄ β β |
axlowdimlem4.2 | β’ π΅ β β |
Ref | Expression |
---|---|
axlowdimlem4 | β’ {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ne2 12436 | . . . 4 β’ 1 β 2 | |
2 | 1ex 11226 | . . . . 5 β’ 1 β V | |
3 | 2ex 12305 | . . . . 5 β’ 2 β V | |
4 | axlowdimlem4.1 | . . . . . 6 β’ π΄ β β | |
5 | 4 | elexi 3489 | . . . . 5 β’ π΄ β V |
6 | axlowdimlem4.2 | . . . . . 6 β’ π΅ β β | |
7 | 6 | elexi 3489 | . . . . 5 β’ π΅ β V |
8 | 2, 3, 5, 7 | fpr 7157 | . . . 4 β’ (1 β 2 β {β¨1, π΄β©, β¨2, π΅β©}:{1, 2}βΆ{π΄, π΅}) |
9 | 1, 8 | ax-mp 5 | . . 3 β’ {β¨1, π΄β©, β¨2, π΅β©}:{1, 2}βΆ{π΄, π΅} |
10 | fz12pr 13576 | . . . 4 β’ (1...2) = {1, 2} | |
11 | 10 | feq2i 6708 | . . 3 β’ ({β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆ{π΄, π΅} β {β¨1, π΄β©, β¨2, π΅β©}:{1, 2}βΆ{π΄, π΅}) |
12 | 9, 11 | mpbir 230 | . 2 β’ {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆ{π΄, π΅} |
13 | 4, 6 | pm3.2i 470 | . . 3 β’ (π΄ β β β§ π΅ β β) |
14 | 5, 7 | prss 4819 | . . 3 β’ ((π΄ β β β§ π΅ β β) β {π΄, π΅} β β) |
15 | 13, 14 | mpbi 229 | . 2 β’ {π΄, π΅} β β |
16 | fss 6733 | . 2 β’ (({β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆ{π΄, π΅} β§ {π΄, π΅} β β) β {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ) | |
17 | 12, 15, 16 | mp2an 691 | 1 β’ {β¨1, π΄β©, β¨2, π΅β©}:(1...2)βΆβ |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 β wcel 2099 β wne 2935 β wss 3944 {cpr 4626 β¨cop 4630 βΆwf 6538 (class class class)co 7414 βcr 11123 1c1 11125 2c2 12283 ...cfz 13502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 |
This theorem is referenced by: axlowdimlem5 28731 axlowdimlem6 28732 axlowdimlem17 28743 |
Copyright terms: Public domain | W3C validator |