MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvf1pr Structured version   Visualization version   GIF version

Theorem fvf1pr 7343
Description: Values of a one-to-one function between two sets with two elements. Actually, such a function is a bijection. (Contributed by AV, 22-Jul-2025.)
Assertion
Ref Expression
fvf1pr (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))

Proof of Theorem fvf1pr
StepHypRef Expression
1 f1f 6817 . . 3 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → 𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌})
2 prid1g 4785 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
323ad2ant1 1133 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐴 ∈ {𝐴, 𝐵})
4 ffvelcdm 7115 . . 3 ((𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌} ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ {𝑋, 𝑌})
51, 3, 4syl2anr 596 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (𝐹𝐴) ∈ {𝑋, 𝑌})
6 prid2g 4786 . . . 4 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
763ad2ant2 1134 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐵 ∈ {𝐴, 𝐵})
8 ffvelcdm 7115 . . 3 ((𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌} ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ {𝑋, 𝑌})
91, 7, 8syl2anr 596 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (𝐹𝐵) ∈ {𝑋, 𝑌})
10 elpri 4671 . . 3 ((𝐹𝐴) ∈ {𝑋, 𝑌} → ((𝐹𝐴) = 𝑋 ∨ (𝐹𝐴) = 𝑌))
11 elpri 4671 . . 3 ((𝐹𝐵) ∈ {𝑋, 𝑌} → ((𝐹𝐵) = 𝑋 ∨ (𝐹𝐵) = 𝑌))
12 eqtr3 2766 . . . . . . . 8 (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (𝐹𝐴) = (𝐹𝐵))
133, 7jca 511 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵}))
14 f1veqaeq 7294 . . . . . . . . 9 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
1513, 14sylan2 592 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
1612, 15syl5 34 . . . . . . 7 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → 𝐴 = 𝐵))
1716ex 412 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → 𝐴 = 𝐵)))
18 eqneqall 2957 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
1918com12 32 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
20193ad2ant3 1135 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
2120a1i 11 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
2217, 21syldd 72 . . . . 5 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
2322impcom 407 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
24 olc 867 . . . . 5 (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
2524a1i 11 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
26 orc 866 . . . . 5 (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
2726a1i 11 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
28 eqtr3 2766 . . . . . . . 8 (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (𝐹𝐴) = (𝐹𝐵))
2928, 15syl5 34 . . . . . . 7 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → 𝐴 = 𝐵))
3029ex 412 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → 𝐴 = 𝐵)))
3130, 21syldd 72 . . . . 5 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
3231impcom 407 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
3323, 25, 27, 32ccased 1039 . . 3 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → ((((𝐹𝐴) = 𝑋 ∨ (𝐹𝐴) = 𝑌) ∧ ((𝐹𝐵) = 𝑋 ∨ (𝐹𝐵) = 𝑌)) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
3410, 11, 33syl2ani 606 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) ∈ {𝑋, 𝑌} ∧ (𝐹𝐵) ∈ {𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
355, 9, 34mp2and 698 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {cpr 4650  wf 6569  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator