MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvf1pr Structured version   Visualization version   GIF version

Theorem fvf1pr 7236
Description: Values of a one-to-one function between two sets with two elements. Actually, such a function is a bijection. (Contributed by AV, 22-Jul-2025.)
Assertion
Ref Expression
fvf1pr (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))

Proof of Theorem fvf1pr
StepHypRef Expression
1 f1f 6715 . . 3 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → 𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌})
2 prid1g 4711 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
323ad2ant1 1133 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐴 ∈ {𝐴, 𝐵})
4 ffvelcdm 7009 . . 3 ((𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌} ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ {𝑋, 𝑌})
51, 3, 4syl2anr 597 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (𝐹𝐴) ∈ {𝑋, 𝑌})
6 prid2g 4712 . . . 4 (𝐵𝑊𝐵 ∈ {𝐴, 𝐵})
763ad2ant2 1134 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝐵 ∈ {𝐴, 𝐵})
8 ffvelcdm 7009 . . 3 ((𝐹:{𝐴, 𝐵}⟶{𝑋, 𝑌} ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ {𝑋, 𝑌})
91, 7, 8syl2anr 597 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (𝐹𝐵) ∈ {𝑋, 𝑌})
10 elpri 4598 . . 3 ((𝐹𝐴) ∈ {𝑋, 𝑌} → ((𝐹𝐴) = 𝑋 ∨ (𝐹𝐴) = 𝑌))
11 elpri 4598 . . 3 ((𝐹𝐵) ∈ {𝑋, 𝑌} → ((𝐹𝐵) = 𝑋 ∨ (𝐹𝐵) = 𝑌))
12 eqtr3 2752 . . . . . . . 8 (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (𝐹𝐴) = (𝐹𝐵))
133, 7jca 511 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵}))
14 f1veqaeq 7185 . . . . . . . . 9 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴 ∈ {𝐴, 𝐵} ∧ 𝐵 ∈ {𝐴, 𝐵})) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
1513, 14sylan2 593 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → ((𝐹𝐴) = (𝐹𝐵) → 𝐴 = 𝐵))
1612, 15syl5 34 . . . . . . 7 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → 𝐴 = 𝐵))
1716ex 412 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → 𝐴 = 𝐵)))
18 eqneqall 2937 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
1918com12 32 . . . . . . . 8 (𝐴𝐵 → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
20193ad2ant3 1135 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
2120a1i 11 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝐴 = 𝐵 → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
2217, 21syldd 72 . . . . 5 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
2322impcom 407 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
24 olc 868 . . . . 5 (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
2524a1i 11 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
26 orc 867 . . . . 5 (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
2726a1i 11 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
28 eqtr3 2752 . . . . . . . 8 (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (𝐹𝐴) = (𝐹𝐵))
2928, 15syl5 34 . . . . . . 7 ((𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} ∧ (𝐴𝑉𝐵𝑊𝐴𝐵)) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → 𝐴 = 𝐵))
3029ex 412 . . . . . 6 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → 𝐴 = 𝐵)))
3130, 21syldd 72 . . . . 5 (𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))))
3231impcom 407 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑌) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
3323, 25, 27, 32ccased 1038 . . 3 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → ((((𝐹𝐴) = 𝑋 ∨ (𝐹𝐴) = 𝑌) ∧ ((𝐹𝐵) = 𝑋 ∨ (𝐹𝐵) = 𝑌)) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
3410, 11, 33syl2ani 607 . 2 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) ∈ {𝑋, 𝑌} ∧ (𝐹𝐵) ∈ {𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋))))
355, 9, 34mp2and 699 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐹:{𝐴, 𝐵}–1-1→{𝑋, 𝑌}) → (((𝐹𝐴) = 𝑋 ∧ (𝐹𝐵) = 𝑌) ∨ ((𝐹𝐴) = 𝑌 ∧ (𝐹𝐵) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  wne 2926  {cpr 4576  wf 6473  1-1wf1 6474  cfv 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fv 6485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator