Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvimage Structured version   Visualization version   GIF version

Theorem fvimage 36045
Description: Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvimage ((𝐴𝑉 ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))

Proof of Theorem fvimage
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝑉𝐴 ∈ V)
2 imaeq2 6012 . . 3 (𝑥 = 𝐴 → (𝑅𝑥) = (𝑅𝐴))
3 imageval 36044 . . 3 Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
42, 3fvmptg 6936 . 2 ((𝐴 ∈ V ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))
51, 4sylan 580 1 ((𝐴𝑉 ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cima 5624  cfv 6489  Imagecimage 35954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-txp 35968  df-image 35978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator