| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmpt3 | Structured version Visualization version GIF version | ||
| Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| fvmpt3.a | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmpt3.b | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| fvmpt3.c | ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmpt3 | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq1d 2818 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑉 ↔ 𝐶 ∈ 𝑉)) |
| 3 | fvmpt3.c | . . 3 ⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) | |
| 4 | 2, 3 | vtoclga 3529 | . 2 ⊢ (𝐴 ∈ 𝐷 → 𝐶 ∈ 𝑉) |
| 5 | fvmpt3.b | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | 1, 5 | fvmptg 6935 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| 7 | 4, 6 | mpdan 687 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 |
| This theorem is referenced by: fvmpt3i 6942 harval 9455 mrcfval 17518 elmptrab 23745 zringfrac 33528 frlmsnic 42661 wallispi 46195 1arymaptfv 48768 2arymaptfv 48779 |
| Copyright terms: Public domain | W3C validator |