MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt3 Structured version   Visualization version   GIF version

Theorem fvmpt3 6941
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3.c (𝑥𝐷𝐵𝑉)
Assertion
Ref Expression
fvmpt3 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq1d 2818 . . 3 (𝑥 = 𝐴 → (𝐵𝑉𝐶𝑉))
3 fvmpt3.c . . 3 (𝑥𝐷𝐵𝑉)
42, 3vtoclga 3529 . 2 (𝐴𝐷𝐶𝑉)
5 fvmpt3.b . . 3 𝐹 = (𝑥𝐷𝐵)
61, 5fvmptg 6935 . 2 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
74, 6mpdan 687 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5176  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496
This theorem is referenced by:  fvmpt3i  6942  harval  9455  mrcfval  17518  elmptrab  23745  zringfrac  33528  frlmsnic  42661  wallispi  46195  1arymaptfv  48768  2arymaptfv  48779
  Copyright terms: Public domain W3C validator