MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt3 Structured version   Visualization version   GIF version

Theorem fvmpt3 6933
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3.c (𝑥𝐷𝐵𝑉)
Assertion
Ref Expression
fvmpt3 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq1d 2816 . . 3 (𝑥 = 𝐴 → (𝐵𝑉𝐶𝑉))
3 fvmpt3.c . . 3 (𝑥𝐷𝐵𝑉)
42, 3vtoclga 3532 . 2 (𝐴𝐷𝐶𝑉)
5 fvmpt3.b . . 3 𝐹 = (𝑥𝐷𝐵)
61, 5fvmptg 6927 . 2 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
74, 6mpdan 687 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5172  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  fvmpt3i  6934  harval  9446  mrcfval  17514  elmptrab  23743  zringfrac  33517  frlmsnic  42579  wallispi  46114  1arymaptfv  48678  2arymaptfv  48689
  Copyright terms: Public domain W3C validator