MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt3 Structured version   Visualization version   GIF version

Theorem fvmpt3 6975
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3.c (𝑥𝐷𝐵𝑉)
Assertion
Ref Expression
fvmpt3 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3
StepHypRef Expression
1 fvmpt3.a . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
21eleq1d 2814 . . 3 (𝑥 = 𝐴 → (𝐵𝑉𝐶𝑉))
3 fvmpt3.c . . 3 (𝑥𝐷𝐵𝑉)
42, 3vtoclga 3546 . 2 (𝐴𝐷𝐶𝑉)
5 fvmpt3.b . . 3 𝐹 = (𝑥𝐷𝐵)
61, 5fvmptg 6969 . 2 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
74, 6mpdan 687 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  fvmpt3i  6976  harval  9520  mrcfval  17576  elmptrab  23721  zringfrac  33532  frlmsnic  42535  wallispi  46075  1arymaptfv  48633  2arymaptfv  48644
  Copyright terms: Public domain W3C validator