MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   GIF version

Theorem mrcfval 17317
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcfval (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Distinct variable groups:   𝑥,𝐹,𝑠   𝑥,𝐶,𝑠   𝑥,𝑋,𝑠

Proof of Theorem mrcfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2 𝐹 = (mrCls‘𝐶)
2 fvssunirn 6803 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3917 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ran Moore)
4 unieq 4850 . . . . . . 7 (𝑐 = 𝐶 𝑐 = 𝐶)
54pweqd 4552 . . . . . 6 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
6 rabeq 3418 . . . . . . 7 (𝑐 = 𝐶 → {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
76inteqd 4884 . . . . . 6 (𝑐 = 𝐶 {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
85, 7mpteq12dv 5165 . . . . 5 (𝑐 = 𝐶 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
9 df-mrc 17296 . . . . 5 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
10 mreunirn 17310 . . . . . . . 8 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
11 mrcflem 17315 . . . . . . . 8 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
1210, 11sylbi 216 . . . . . . 7 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
13 fssxp 6628 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
1412, 13syl 17 . . . . . 6 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
15 vuniex 7592 . . . . . . . 8 𝑐 ∈ V
1615pwex 5303 . . . . . . 7 𝒫 𝑐 ∈ V
17 vex 3436 . . . . . . 7 𝑐 ∈ V
1816, 17xpex 7603 . . . . . 6 (𝒫 𝑐 × 𝑐) ∈ V
19 ssexg 5247 . . . . . 6 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
2014, 18, 19sylancl 586 . . . . 5 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
218, 9, 20fvmpt3 6879 . . . 4 (𝐶 ran Moore → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
223, 21syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
23 mreuni 17309 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
2423pweqd 4552 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝒫 𝐶 = 𝒫 𝑋)
2524mpteq1d 5169 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
2622, 25eqtrd 2778 . 2 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
271, 26eqtrid 2790 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839   cint 4879  cmpt 5157   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by:  mrcf  17318  mrcval  17319  acsficl2d  18270  mrclsp  20251  mrccls  22230
  Copyright terms: Public domain W3C validator