MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   GIF version

Theorem mrcfval 17234
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcfval (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Distinct variable groups:   𝑥,𝐹,𝑠   𝑥,𝐶,𝑠   𝑥,𝑋,𝑠

Proof of Theorem mrcfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2 𝐹 = (mrCls‘𝐶)
2 fvssunirn 6785 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3913 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ran Moore)
4 unieq 4847 . . . . . . 7 (𝑐 = 𝐶 𝑐 = 𝐶)
54pweqd 4549 . . . . . 6 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
6 rabeq 3408 . . . . . . 7 (𝑐 = 𝐶 → {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
76inteqd 4881 . . . . . 6 (𝑐 = 𝐶 {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
85, 7mpteq12dv 5161 . . . . 5 (𝑐 = 𝐶 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
9 df-mrc 17213 . . . . 5 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
10 mreunirn 17227 . . . . . . . 8 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
11 mrcflem 17232 . . . . . . . 8 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
1210, 11sylbi 216 . . . . . . 7 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
13 fssxp 6612 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
1412, 13syl 17 . . . . . 6 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
15 vuniex 7570 . . . . . . . 8 𝑐 ∈ V
1615pwex 5298 . . . . . . 7 𝒫 𝑐 ∈ V
17 vex 3426 . . . . . . 7 𝑐 ∈ V
1816, 17xpex 7581 . . . . . 6 (𝒫 𝑐 × 𝑐) ∈ V
19 ssexg 5242 . . . . . 6 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
2014, 18, 19sylancl 585 . . . . 5 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
218, 9, 20fvmpt3 6861 . . . 4 (𝐶 ran Moore → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
223, 21syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
23 mreuni 17226 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
2423pweqd 4549 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝒫 𝐶 = 𝒫 𝑋)
2524mpteq1d 5165 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
2622, 25eqtrd 2778 . 2 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
271, 26eqtrid 2790 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836   cint 4876  cmpt 5153   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  Moorecmre 17208  mrClscmrc 17209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-mre 17212  df-mrc 17213
This theorem is referenced by:  mrcf  17235  mrcval  17236  acsficl2d  18185  mrclsp  20166  mrccls  22138
  Copyright terms: Public domain W3C validator