MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   GIF version

Theorem mrcfval 17552
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrClsβ€˜πΆ)
Assertion
Ref Expression
mrcfval (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝐹 = (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
Distinct variable groups:   π‘₯,𝐹,𝑠   π‘₯,𝐢,𝑠   π‘₯,𝑋,𝑠

Proof of Theorem mrcfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2 𝐹 = (mrClsβ€˜πΆ)
2 fvssunirn 6925 . . . . 5 (Mooreβ€˜π‘‹) βŠ† βˆͺ ran Moore
32sseli 3979 . . . 4 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝐢 ∈ βˆͺ ran Moore)
4 unieq 4920 . . . . . . 7 (𝑐 = 𝐢 β†’ βˆͺ 𝑐 = βˆͺ 𝐢)
54pweqd 4620 . . . . . 6 (𝑐 = 𝐢 β†’ 𝒫 βˆͺ 𝑐 = 𝒫 βˆͺ 𝐢)
6 rabeq 3447 . . . . . . 7 (𝑐 = 𝐢 β†’ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠} = {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠})
76inteqd 4956 . . . . . 6 (𝑐 = 𝐢 β†’ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠} = ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠})
85, 7mpteq12dv 5240 . . . . 5 (𝑐 = 𝐢 β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) = (π‘₯ ∈ 𝒫 βˆͺ 𝐢 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
9 df-mrc 17531 . . . . 5 mrCls = (𝑐 ∈ βˆͺ ran Moore ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}))
10 mreunirn 17545 . . . . . . . 8 (𝑐 ∈ βˆͺ ran Moore ↔ 𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐))
11 mrcflem 17550 . . . . . . . 8 (𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}):𝒫 βˆͺ π‘βŸΆπ‘)
1210, 11sylbi 216 . . . . . . 7 (𝑐 ∈ βˆͺ ran Moore β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}):𝒫 βˆͺ π‘βŸΆπ‘)
13 fssxp 6746 . . . . . . 7 ((π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}):𝒫 βˆͺ π‘βŸΆπ‘ β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐))
1412, 13syl 17 . . . . . 6 (𝑐 ∈ βˆͺ ran Moore β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐))
15 vuniex 7729 . . . . . . . 8 βˆͺ 𝑐 ∈ V
1615pwex 5379 . . . . . . 7 𝒫 βˆͺ 𝑐 ∈ V
17 vex 3479 . . . . . . 7 𝑐 ∈ V
1816, 17xpex 7740 . . . . . 6 (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∈ V
19 ssexg 5324 . . . . . 6 (((π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∧ (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∈ V) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V)
2014, 18, 19sylancl 587 . . . . 5 (𝑐 ∈ βˆͺ ran Moore β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V)
218, 9, 20fvmpt3 7003 . . . 4 (𝐢 ∈ βˆͺ ran Moore β†’ (mrClsβ€˜πΆ) = (π‘₯ ∈ 𝒫 βˆͺ 𝐢 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
223, 21syl 17 . . 3 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (mrClsβ€˜πΆ) = (π‘₯ ∈ 𝒫 βˆͺ 𝐢 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
23 mreuni 17544 . . . . 5 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ βˆͺ 𝐢 = 𝑋)
2423pweqd 4620 . . . 4 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝒫 βˆͺ 𝐢 = 𝒫 𝑋)
2524mpteq1d 5244 . . 3 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝐢 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}) = (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
2622, 25eqtrd 2773 . 2 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (mrClsβ€˜πΆ) = (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
271, 26eqtrid 2785 1 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝐹 = (π‘₯ ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐢 ∣ π‘₯ βŠ† 𝑠}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  βˆ© cint 4951   ↦ cmpt 5232   Γ— cxp 5675  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  Moorecmre 17526  mrClscmrc 17527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-mre 17530  df-mrc 17531
This theorem is referenced by:  mrcf  17553  mrcval  17554  acsficl2d  18505  mrclsp  20600  mrccls  22583
  Copyright terms: Public domain W3C validator