MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcfval Structured version   Visualization version   GIF version

Theorem mrcfval 17620
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcfval (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Distinct variable groups:   𝑥,𝐹,𝑠   𝑥,𝐶,𝑠   𝑥,𝑋,𝑠

Proof of Theorem mrcfval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . 2 𝐹 = (mrCls‘𝐶)
2 fvssunirn 6909 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3954 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝐶 ran Moore)
4 unieq 4894 . . . . . . 7 (𝑐 = 𝐶 𝑐 = 𝐶)
54pweqd 4592 . . . . . 6 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
6 rabeq 3430 . . . . . . 7 (𝑐 = 𝐶 → {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
76inteqd 4927 . . . . . 6 (𝑐 = 𝐶 {𝑠𝑐𝑥𝑠} = {𝑠𝐶𝑥𝑠})
85, 7mpteq12dv 5207 . . . . 5 (𝑐 = 𝐶 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
9 df-mrc 17599 . . . . 5 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
10 mreunirn 17613 . . . . . . . 8 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
11 mrcflem 17618 . . . . . . . 8 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
1210, 11sylbi 217 . . . . . . 7 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
13 fssxp 6733 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
1412, 13syl 17 . . . . . 6 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
15 vuniex 7733 . . . . . . . 8 𝑐 ∈ V
1615pwex 5350 . . . . . . 7 𝒫 𝑐 ∈ V
17 vex 3463 . . . . . . 7 𝑐 ∈ V
1816, 17xpex 7747 . . . . . 6 (𝒫 𝑐 × 𝑐) ∈ V
19 ssexg 5293 . . . . . 6 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
2014, 18, 19sylancl 586 . . . . 5 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
218, 9, 20fvmpt3 6990 . . . 4 (𝐶 ran Moore → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
223, 21syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}))
23 mreuni 17612 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → 𝐶 = 𝑋)
2423pweqd 4592 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝒫 𝐶 = 𝒫 𝑋)
2524mpteq1d 5210 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝐶 {𝑠𝐶𝑥𝑠}) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
2622, 25eqtrd 2770 . 2 (𝐶 ∈ (Moore‘𝑋) → (mrCls‘𝐶) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
271, 26eqtrid 2782 1 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883   cint 4922  cmpt 5201   × cxp 5652  ran crn 5655  wf 6527  cfv 6531  Moorecmre 17594  mrClscmrc 17595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-mre 17598  df-mrc 17599
This theorem is referenced by:  mrcf  17621  mrcval  17622  acsficl2d  18562  mrclsp  20946  mrccls  23017
  Copyright terms: Public domain W3C validator