| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 12843 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 12571 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
| 3 | | wallispi.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2
· 𝑘) / ((2 ·
𝑘) + 1)))) |
| 4 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦
∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
| 5 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0
↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦
∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦
∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦
∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) |
| 6 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) ·
(1 / (seq1( · , 𝐹)‘𝑛)))) |
| 7 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (((2
· 𝑛) + 1) / (2
· 𝑛))) = (𝑛 ∈ ℕ ↦ (((2
· 𝑛) + 1) / (2
· 𝑛))) |
| 8 | 3, 4, 5, 6, 7 | wallispilem5 46074 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1 |
| 9 | 8 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1) |
| 10 | | 2cnd 12271 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) |
| 11 | | picn 26374 |
. . . . . . . 8
⊢ π
∈ ℂ |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ π ∈ ℂ) |
| 13 | | pire 26373 |
. . . . . . . . 9
⊢ π
∈ ℝ |
| 14 | | pipos 26375 |
. . . . . . . . 9
⊢ 0 <
π |
| 15 | 13, 14 | gt0ne0ii 11721 |
. . . . . . . 8
⊢ π ≠
0 |
| 16 | 15 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ π ≠ 0) |
| 17 | 10, 12, 16 | divcld 11965 |
. . . . . 6
⊢ (⊤
→ (2 / π) ∈ ℂ) |
| 18 | | nnex 12199 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 19 | 18 | mptex 7200 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛))) ∈ V |
| 20 | 19 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V) |
| 21 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → π
∈ ℂ) |
| 22 | 21 | halfcld 12434 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (π /
2) ∈ ℂ) |
| 23 | | elnnuz 12844 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
| 24 | 23 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
| 25 | | oveq2 7398 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗)) |
| 26 | 25 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1)) |
| 27 | 25, 26 | oveq12d 7408 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1))) |
| 28 | 25 | oveq1d 7405 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1)) |
| 29 | 25, 28 | oveq12d 7408 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1))) |
| 30 | 27, 29 | oveq12d 7408 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2
· 𝑗) / ((2 ·
𝑗) + 1)))) |
| 31 | | elfznn 13521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ) |
| 32 | | 2cnd 12271 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → 2 ∈
ℂ) |
| 33 | | nncn 12201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
| 34 | 32, 33 | mulcld 11201 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ∈
ℂ) |
| 35 | | 1cnd 11176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → 1 ∈
ℂ) |
| 36 | 34, 35 | subcld 11540 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) − 1)
∈ ℂ) |
| 37 | | 1red 11182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ) |
| 38 | | 1t1e1 12350 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1
· 1) = 1 |
| 39 | 37, 37 | remulcld 11211 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → (1
· 1) ∈ ℝ) |
| 40 | | 2re 12267 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℝ |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 2 ∈
ℝ) |
| 42 | 41, 37 | remulcld 11211 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → (2
· 1) ∈ ℝ) |
| 43 | | nnre 12200 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
| 44 | 41, 43 | remulcld 11211 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ∈
ℝ) |
| 45 | | 1rp 12962 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℝ+ |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ+) |
| 47 | | 1lt2 12359 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 <
2 |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 1 <
2) |
| 49 | 37, 41, 46, 48 | ltmul1dd 13057 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → (1
· 1) < (2 · 1)) |
| 50 | | 0le2 12295 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ≤
2 |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 0 ≤
2) |
| 52 | | nnge1 12221 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ ℕ → 1 ≤
𝑗) |
| 53 | 37, 43, 41, 51, 52 | lemul2ad 12130 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → (2
· 1) ≤ (2 · 𝑗)) |
| 54 | 39, 42, 44, 49, 53 | ltletrd 11341 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℕ → (1
· 1) < (2 · 𝑗)) |
| 55 | 38, 54 | eqbrtrrid 5146 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 1 < (2
· 𝑗)) |
| 56 | 37, 55 | gtned 11316 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ≠
1) |
| 57 | 34, 35, 56 | subne0d 11549 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) − 1) ≠
0) |
| 58 | 34, 36, 57 | divcld 11965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) / ((2 ·
𝑗) − 1)) ∈
ℂ) |
| 59 | 34, 35 | addcld 11200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) + 1) ∈
ℂ) |
| 60 | | 0red 11184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → 0 ∈
ℝ) |
| 61 | 44, 37 | readdcld 11210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) + 1) ∈
ℝ) |
| 62 | 46 | rpgt0d 13005 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 0 <
1) |
| 63 | | 2rp 12963 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℝ+ |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → 2 ∈
ℝ+) |
| 65 | | nnrp 12970 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ+) |
| 66 | 64, 65 | rpmulcld 13018 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ∈
ℝ+) |
| 67 | 37, 66 | ltaddrp2d 13036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → 1 <
((2 · 𝑗) +
1)) |
| 68 | 60, 37, 61, 62, 67 | lttrd 11342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → 0 <
((2 · 𝑗) +
1)) |
| 69 | 60, 68 | gtned 11316 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) + 1) ≠
0) |
| 70 | 34, 59, 69 | divcld 11965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) / ((2 ·
𝑗) + 1)) ∈
ℂ) |
| 71 | 58, 70 | mulcld 11201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (((2
· 𝑗) / ((2 ·
𝑗) − 1)) · ((2
· 𝑗) / ((2 ·
𝑗) + 1))) ∈
ℂ) |
| 72 | 31, 71 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈
ℂ) |
| 73 | 3, 30, 31, 72 | fvmptd3 6994 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑛) → (𝐹‘𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1)))) |
| 74 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...𝑛) → 2 ∈
ℝ+) |
| 75 | 31 | nnrpd 13000 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+) |
| 76 | 74, 75 | rpmulcld 13018 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈
ℝ+) |
| 77 | 44, 37 | resubcld 11613 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) − 1)
∈ ℝ) |
| 78 | | 1m1e0 12265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 |
| 79 | 37, 44, 37, 55 | ltsub1dd 11797 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ ℕ → (1
− 1) < ((2 · 𝑗) − 1)) |
| 80 | 78, 79 | eqbrtrrid 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ → 0 <
((2 · 𝑗) −
1)) |
| 81 | 77, 80 | elrpd 12999 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) − 1)
∈ ℝ+) |
| 82 | 31, 81 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈
ℝ+) |
| 83 | 76, 82 | rpdivcld 13019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈
ℝ+) |
| 84 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ) |
| 85 | 31 | nnred 12208 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ) |
| 86 | 84, 85 | remulcld 11211 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ) |
| 87 | 74 | rpge0d 13006 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑛) → 0 ≤ 2) |
| 88 | 75 | rpge0d 13006 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗) |
| 89 | 84, 85, 87, 88 | mulge0d 11762 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗)) |
| 90 | 86, 89 | ge0p1rpd 13032 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈
ℝ+) |
| 91 | 76, 90 | rpdivcld 13019 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈
ℝ+) |
| 92 | 83, 91 | rpmulcld 13018 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈
ℝ+) |
| 93 | 73, 92 | eqeltrd 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑛) → (𝐹‘𝑗) ∈
ℝ+) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹‘𝑗) ∈
ℝ+) |
| 95 | | rpmulcl 12983 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℝ+
∧ 𝑤 ∈
ℝ+) → (𝑗 · 𝑤) ∈
ℝ+) |
| 96 | 95 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+
∧ 𝑤 ∈
ℝ+)) → (𝑗 · 𝑤) ∈
ℝ+) |
| 97 | 24, 94, 96 | seqcl 13994 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (seq1(
· , 𝐹)‘𝑛) ∈
ℝ+) |
| 98 | 97 | rpcnd 13004 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (seq1(
· , 𝐹)‘𝑛) ∈
ℂ) |
| 99 | 97 | rpne0d 13007 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → (seq1(
· , 𝐹)‘𝑛) ≠ 0) |
| 100 | 98, 99 | reccld 11958 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑛)) ∈ ℂ) |
| 101 | 22, 100 | mulcld 11201 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ) |
| 102 | 6, 101 | fmpti 7087 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ |
| 103 | 102 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ) |
| 104 | 103 | ffvelcdmda 7059 |
. . . . . 6
⊢
((⊤ ∧ 𝑗
∈ ℕ) → ((𝑛
∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ) |
| 105 | | fveq2 6861 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗)) |
| 106 | 105 | eleq1d 2814 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1(
· , 𝐹)‘𝑗) ∈
ℝ+)) |
| 107 | 106, 97 | vtoclga 3546 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → (seq1(
· , 𝐹)‘𝑗) ∈
ℝ+) |
| 108 | 107 | rpcnd 13004 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (seq1(
· , 𝐹)‘𝑗) ∈
ℂ) |
| 109 | 107 | rpne0d 13007 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (seq1(
· , 𝐹)‘𝑗) ≠ 0) |
| 110 | 35, 108, 109 | divrecd 11968 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗)))) |
| 111 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → π
∈ ℂ) |
| 112 | 64 | rpne0d 13007 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 2 ≠
0) |
| 113 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → π ≠
0) |
| 114 | 32, 111, 112, 113 | divcan6d 11984 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((2 /
π) · (π / 2)) = 1) |
| 115 | 114 | eqcomd 2736 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → 1 = ((2 /
π) · (π / 2))) |
| 116 | 115 | oveq1d 7405 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (1
· (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2))
· (1 / (seq1( · , 𝐹)‘𝑗)))) |
| 117 | 32, 111, 113 | divcld 11965 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (2 /
π) ∈ ℂ) |
| 118 | 111 | halfcld 12434 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (π /
2) ∈ ℂ) |
| 119 | 108, 109 | reccld 11958 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑗)) ∈ ℂ) |
| 120 | 117, 118,
119 | mulassd 11204 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (((2 /
π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2)
· (1 / (seq1( · , 𝐹)‘𝑗))))) |
| 121 | 110, 116,
120 | 3eqtrd 2769 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2)
· (1 / (seq1( · , 𝐹)‘𝑗))))) |
| 122 | | eqidd 2731 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( ·
, 𝐹)‘𝑛)))) |
| 123 | 105 | oveq2d 7406 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗))) |
| 124 | 123 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗))) |
| 125 | | id 22 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
| 126 | 107 | rpreccld 13012 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑗)) ∈
ℝ+) |
| 127 | 122, 124,
125, 126 | fvmptd 6978 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗))) |
| 128 | | eqidd 2731 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) ·
(1 / (seq1( · , 𝐹)‘𝑛))))) |
| 129 | 124 | oveq2d 7406 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1(
· , 𝐹)‘𝑛))) = ((π / 2) · (1 /
(seq1( · , 𝐹)‘𝑗)))) |
| 130 | 118, 119 | mulcld 11201 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ) |
| 131 | 128, 129,
125, 130 | fvmptd 6978 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π /
2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( ·
, 𝐹)‘𝑗)))) |
| 132 | 131 | oveq2d 7406 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → ((2 /
π) · ((𝑛 ∈
ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2)
· (1 / (seq1( · , 𝐹)‘𝑗))))) |
| 133 | 121, 127,
132 | 3eqtr4d 2775 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) ·
(1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗))) |
| 134 | 133 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑗
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) ·
(1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗))) |
| 135 | 1, 2, 9, 17, 20, 104, 134 | climmulc2 15610 |
. . . . 5
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) ·
1)) |
| 136 | | 2cn 12268 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 137 | 136, 11, 15 | divcli 11931 |
. . . . . 6
⊢ (2 /
π) ∈ ℂ |
| 138 | 137 | mulridi 11185 |
. . . . 5
⊢ ((2 /
π) · 1) = (2 / π) |
| 139 | 135, 138 | breqtrdi 5151 |
. . . 4
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π)) |
| 140 | | 2ne0 12297 |
. . . . . 6
⊢ 2 ≠
0 |
| 141 | 136, 11, 140, 15 | divne0i 11937 |
. . . . 5
⊢ (2 /
π) ≠ 0 |
| 142 | 141 | a1i 11 |
. . . 4
⊢ (⊤
→ (2 / π) ≠ 0) |
| 143 | 127, 119 | eqeltrd 2829 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ) |
| 144 | 108, 109 | recne0d 11959 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (1 /
(seq1( · , 𝐹)‘𝑗)) ≠ 0) |
| 145 | 127, 144 | eqnetrd 2993 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0) |
| 146 | | nelsn 4633 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( ·
, 𝐹)‘𝑛)))‘𝑗) ∈ {0}) |
| 147 | 145, 146 | syl 17 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → ¬
((𝑛 ∈ ℕ ↦
(1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0}) |
| 148 | 143, 147 | eldifd 3928 |
. . . . 5
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖
{0})) |
| 149 | 148 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑗
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖
{0})) |
| 150 | 108, 109 | recrecd 11962 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (1 / (1 /
(seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗)) |
| 151 | 122, 124,
125, 119 | fvmptd 6978 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
(seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗))) |
| 152 | 151 | oveq2d 7406 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (1 /
((𝑛 ∈ ℕ ↦
(1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗)))) |
| 153 | | wallispi.2 |
. . . . . . 7
⊢ 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · ,
𝐹)‘𝑛)) |
| 154 | 105, 153,
97 | fvmpt3 6975 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝑊‘𝑗) = (seq1( · , 𝐹)‘𝑗)) |
| 155 | 150, 152,
154 | 3eqtr4rd 2776 |
. . . . 5
⊢ (𝑗 ∈ ℕ → (𝑊‘𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( ·
, 𝐹)‘𝑛)))‘𝑗))) |
| 156 | 155 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (𝑊‘𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( ·
, 𝐹)‘𝑛)))‘𝑗))) |
| 157 | 18 | mptex 7200 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ (seq1(
· , 𝐹)‘𝑛)) ∈ V |
| 158 | 153, 157 | eqeltri 2825 |
. . . . 5
⊢ 𝑊 ∈ V |
| 159 | 158 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝑊 ∈
V) |
| 160 | 1, 2, 139, 142, 149, 156, 159 | climrec 45608 |
. . 3
⊢ (⊤
→ 𝑊 ⇝ (1 / (2 /
π))) |
| 161 | 160 | mptru 1547 |
. 2
⊢ 𝑊 ⇝ (1 / (2 /
π)) |
| 162 | | recdiv 11895 |
. . 3
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0))
→ (1 / (2 / π)) = (π / 2)) |
| 163 | 136, 140,
11, 15, 162 | mp4an 693 |
. 2
⊢ (1 / (2 /
π)) = (π / 2) |
| 164 | 161, 163 | breqtri 5135 |
1
⊢ 𝑊 ⇝ (π /
2) |