Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Visualization version   GIF version

Theorem wallispi 43501
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispi.2 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
Assertion
Ref Expression
wallispi 𝑊 ⇝ (π / 2)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐹(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem wallispi
Dummy variables 𝑗 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12550 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12281 . . . 4 (⊤ → 1 ∈ ℤ)
3 wallispi.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
4 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
5 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1))))
6 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
7 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
83, 4, 5, 6, 7wallispilem5 43500 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1
98a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1)
10 2cnd 11981 . . . . . . 7 (⊤ → 2 ∈ ℂ)
11 picn 25521 . . . . . . . 8 π ∈ ℂ
1211a1i 11 . . . . . . 7 (⊤ → π ∈ ℂ)
13 pire 25520 . . . . . . . . 9 π ∈ ℝ
14 pipos 25522 . . . . . . . . 9 0 < π
1513, 14gt0ne0ii 11441 . . . . . . . 8 π ≠ 0
1615a1i 11 . . . . . . 7 (⊤ → π ≠ 0)
1710, 12, 16divcld 11681 . . . . . 6 (⊤ → (2 / π) ∈ ℂ)
18 nnex 11909 . . . . . . . 8 ℕ ∈ V
1918mptex 7081 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V
2019a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V)
2111a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → π ∈ ℂ)
2221halfcld 12148 . . . . . . . . . 10 (𝑛 ∈ ℕ → (π / 2) ∈ ℂ)
23 elnnuz 12551 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2423biimpi 215 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
25 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
2625oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1))
2725, 26oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1)))
2825oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
2925, 28oveq12d 7273 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1)))
3027, 29oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
31 elfznn 13214 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ)
32 2cnd 11981 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 2 ∈ ℂ)
33 nncn 11911 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3432, 33mulcld 10926 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℂ)
35 1cnd 10901 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 1 ∈ ℂ)
3634, 35subcld 11262 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℂ)
37 1red 10907 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 ∈ ℝ)
38 1t1e1 12065 . . . . . . . . . . . . . . . . . . . . . 22 (1 · 1) = 1
3937, 37remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) ∈ ℝ)
40 2re 11977 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 2 ∈ ℝ)
4241, 37remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ∈ ℝ)
43 nnre 11910 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
4441, 43remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
45 1rp 12663 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ+
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ∈ ℝ+)
47 1lt2 12074 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 < 2)
4937, 41, 46, 48ltmul1dd 12756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) < (2 · 1))
50 0le2 12005 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 0 ≤ 2)
52 nnge1 11931 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
5337, 43, 41, 51, 52lemul2ad 11845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ≤ (2 · 𝑗))
5439, 42, 44, 49, 53ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (1 · 1) < (2 · 𝑗))
5538, 54eqbrtrrid 5106 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < (2 · 𝑗))
5637, 55gtned 11040 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (2 · 𝑗) ≠ 1)
5734, 35, 56subne0d 11271 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ≠ 0)
5834, 36, 57divcld 11681 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℂ)
5934, 35addcld 10925 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℂ)
60 0red 10909 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 ∈ ℝ)
6144, 37readdcld 10935 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
6246rpgt0d 12704 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 0 < 1)
63 2rp 12664 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
65 nnrp 12670 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
6664, 65rpmulcld 12717 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
6737, 66ltaddrp2d 12735 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
6860, 37, 61, 62, 67lttrd 11066 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
6960, 68gtned 11040 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
7034, 59, 69divcld 11681 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℂ)
7158, 70mulcld 10926 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7231, 71syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
733, 30, 31, 72fvmptd3 6880 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
7463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ+)
7531nnrpd 12699 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+)
7674, 75rpmulcld 12717 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ+)
7744, 37resubcld 11333 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ)
78 1m1e0 11975 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
7937, 44, 37, 55ltsub1dd 11517 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (1 − 1) < ((2 · 𝑗) − 1))
8078, 79eqbrtrrid 5106 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) − 1))
8177, 80elrpd 12698 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ+)
8231, 81syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈ ℝ+)
8376, 82rpdivcld 12718 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℝ+)
8440a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ)
8531nnred 11918 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ)
8684, 85remulcld 10936 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ)
8774rpge0d 12705 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 2)
8875rpge0d 12705 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗)
8984, 85, 87, 88mulge0d 11482 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗))
9086, 89ge0p1rpd 12731 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈ ℝ+)
9176, 90rpdivcld 12718 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℝ+)
9283, 91rpmulcld 12717 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℝ+)
9373, 92eqeltrd 2839 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) ∈ ℝ+)
9493adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹𝑗) ∈ ℝ+)
95 rpmulcl 12682 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℝ+𝑤 ∈ ℝ+) → (𝑗 · 𝑤) ∈ ℝ+)
9695adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+𝑤 ∈ ℝ+)) → (𝑗 · 𝑤) ∈ ℝ+)
9724, 94, 96seqcl 13671 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℝ+)
9897rpcnd 12703 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℂ)
9997rpne0d 12706 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ≠ 0)
10098, 99reccld 11674 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑛)) ∈ ℂ)
10122, 100mulcld 10926 . . . . . . . . 9 (𝑛 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ)
1026, 101fmpti 6968 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ
103102a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ)
104103ffvelrnda 6943 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ)
105 fveq2 6756 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗))
106105eleq1d 2823 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1( · , 𝐹)‘𝑗) ∈ ℝ+))
107106, 97vtoclga 3503 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℝ+)
108107rpcnd 12703 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℂ)
109107rpne0d 12706 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ≠ 0)
11035, 108, 109divrecd 11684 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗))))
11111a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ∈ ℂ)
11264rpne0d 12706 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 2 ≠ 0)
11315a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ≠ 0)
11432, 111, 112, 113divcan6d 11700 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((2 / π) · (π / 2)) = 1)
115114eqcomd 2744 . . . . . . . . . 10 (𝑗 ∈ ℕ → 1 = ((2 / π) · (π / 2)))
116115oveq1d 7270 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 · (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))))
11732, 111, 113divcld 11681 . . . . . . . . . 10 (𝑗 ∈ ℕ → (2 / π) ∈ ℂ)
118111halfcld 12148 . . . . . . . . . 10 (𝑗 ∈ ℕ → (π / 2) ∈ ℂ)
119108, 109reccld 11674 . . . . . . . . . 10 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℂ)
120117, 118, 119mulassd 10929 . . . . . . . . 9 (𝑗 ∈ ℕ → (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
121110, 116, 1203eqtrd 2782 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
122 eqidd 2739 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))))
123105oveq2d 7271 . . . . . . . . . 10 (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
124123adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
125 id 22 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
126107rpreccld 12711 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℝ+)
127122, 124, 125, 126fvmptd 6864 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
128 eqidd 2739 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
129124oveq2d 7271 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
130118, 119mulcld 10926 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ)
131128, 129, 125, 130fvmptd 6864 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
132131oveq2d 7271 . . . . . . . 8 (𝑗 ∈ ℕ → ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
133121, 127, 1323eqtr4d 2788 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
134133adantl 481 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
1351, 2, 9, 17, 20, 104, 134climmulc2 15274 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) · 1))
136 2cn 11978 . . . . . . 7 2 ∈ ℂ
137136, 11, 15divcli 11647 . . . . . 6 (2 / π) ∈ ℂ
138137mulid1i 10910 . . . . 5 ((2 / π) · 1) = (2 / π)
139135, 138breqtrdi 5111 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π))
140 2ne0 12007 . . . . . 6 2 ≠ 0
141136, 11, 140, 15divne0i 11653 . . . . 5 (2 / π) ≠ 0
142141a1i 11 . . . 4 (⊤ → (2 / π) ≠ 0)
143127, 119eqeltrd 2839 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ)
144108, 109recne0d 11675 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ≠ 0)
145127, 144eqnetrd 3010 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0)
146 nelsn 4598 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
147145, 146syl 17 . . . . . 6 (𝑗 ∈ ℕ → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
148143, 147eldifd 3894 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
149148adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
150108, 109recrecd 11678 . . . . . 6 (𝑗 ∈ ℕ → (1 / (1 / (seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗))
151122, 124, 125, 119fvmptd 6864 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
152151oveq2d 7271 . . . . . 6 (𝑗 ∈ ℕ → (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗))))
153 wallispi.2 . . . . . . 7 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
154105, 153, 97fvmpt3 6861 . . . . . 6 (𝑗 ∈ ℕ → (𝑊𝑗) = (seq1( · , 𝐹)‘𝑗))
155150, 152, 1543eqtr4rd 2789 . . . . 5 (𝑗 ∈ ℕ → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
156155adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
15718mptex 7081 . . . . . 6 (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ∈ V
158153, 157eqeltri 2835 . . . . 5 𝑊 ∈ V
159158a1i 11 . . . 4 (⊤ → 𝑊 ∈ V)
1601, 2, 139, 142, 149, 156, 159climrec 43034 . . 3 (⊤ → 𝑊 ⇝ (1 / (2 / π)))
161160mptru 1546 . 2 𝑊 ⇝ (1 / (2 / π))
162 recdiv 11611 . . 3 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / (2 / π)) = (π / 2))
163136, 140, 11, 15, 162mp4an 689 . 2 (1 / (2 / π)) = (π / 2)
164161, 163breqtri 5095 1 𝑊 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wtru 1540  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  {csn 4558   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  +crp 12659  (,)cioo 13008  ...cfz 13168  seqcseq 13649  cexp 13710  cli 15121  sincsin 15701  πcpi 15704  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  wallispi2  43504
  Copyright terms: Public domain W3C validator