Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Visualization version   GIF version

Theorem wallispi 46068
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispi.2 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
Assertion
Ref Expression
wallispi 𝑊 ⇝ (π / 2)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐹(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem wallispi
Dummy variables 𝑗 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12564 . . . 4 (⊤ → 1 ∈ ℤ)
3 wallispi.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
4 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
5 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1))))
6 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
7 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
83, 4, 5, 6, 7wallispilem5 46067 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1
98a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1)
10 2cnd 12264 . . . . . . 7 (⊤ → 2 ∈ ℂ)
11 picn 26367 . . . . . . . 8 π ∈ ℂ
1211a1i 11 . . . . . . 7 (⊤ → π ∈ ℂ)
13 pire 26366 . . . . . . . . 9 π ∈ ℝ
14 pipos 26368 . . . . . . . . 9 0 < π
1513, 14gt0ne0ii 11714 . . . . . . . 8 π ≠ 0
1615a1i 11 . . . . . . 7 (⊤ → π ≠ 0)
1710, 12, 16divcld 11958 . . . . . 6 (⊤ → (2 / π) ∈ ℂ)
18 nnex 12192 . . . . . . . 8 ℕ ∈ V
1918mptex 7197 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V
2019a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V)
2111a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → π ∈ ℂ)
2221halfcld 12427 . . . . . . . . . 10 (𝑛 ∈ ℕ → (π / 2) ∈ ℂ)
23 elnnuz 12837 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2423biimpi 216 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
25 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
2625oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1))
2725, 26oveq12d 7405 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1)))
2825oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
2925, 28oveq12d 7405 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1)))
3027, 29oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
31 elfznn 13514 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ)
32 2cnd 12264 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 2 ∈ ℂ)
33 nncn 12194 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3432, 33mulcld 11194 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℂ)
35 1cnd 11169 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 1 ∈ ℂ)
3634, 35subcld 11533 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℂ)
37 1red 11175 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 ∈ ℝ)
38 1t1e1 12343 . . . . . . . . . . . . . . . . . . . . . 22 (1 · 1) = 1
3937, 37remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) ∈ ℝ)
40 2re 12260 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 2 ∈ ℝ)
4241, 37remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ∈ ℝ)
43 nnre 12193 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
4441, 43remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
45 1rp 12955 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ+
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ∈ ℝ+)
47 1lt2 12352 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 < 2)
4937, 41, 46, 48ltmul1dd 13050 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) < (2 · 1))
50 0le2 12288 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 0 ≤ 2)
52 nnge1 12214 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
5337, 43, 41, 51, 52lemul2ad 12123 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ≤ (2 · 𝑗))
5439, 42, 44, 49, 53ltletrd 11334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (1 · 1) < (2 · 𝑗))
5538, 54eqbrtrrid 5143 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < (2 · 𝑗))
5637, 55gtned 11309 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (2 · 𝑗) ≠ 1)
5734, 35, 56subne0d 11542 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ≠ 0)
5834, 36, 57divcld 11958 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℂ)
5934, 35addcld 11193 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℂ)
60 0red 11177 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 ∈ ℝ)
6144, 37readdcld 11203 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
6246rpgt0d 12998 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 0 < 1)
63 2rp 12956 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
65 nnrp 12963 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
6664, 65rpmulcld 13011 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
6737, 66ltaddrp2d 13029 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
6860, 37, 61, 62, 67lttrd 11335 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
6960, 68gtned 11309 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
7034, 59, 69divcld 11958 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℂ)
7158, 70mulcld 11194 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7231, 71syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
733, 30, 31, 72fvmptd3 6991 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
7463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ+)
7531nnrpd 12993 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+)
7674, 75rpmulcld 13011 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ+)
7744, 37resubcld 11606 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ)
78 1m1e0 12258 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
7937, 44, 37, 55ltsub1dd 11790 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (1 − 1) < ((2 · 𝑗) − 1))
8078, 79eqbrtrrid 5143 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) − 1))
8177, 80elrpd 12992 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ+)
8231, 81syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈ ℝ+)
8376, 82rpdivcld 13012 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℝ+)
8440a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ)
8531nnred 12201 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ)
8684, 85remulcld 11204 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ)
8774rpge0d 12999 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 2)
8875rpge0d 12999 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗)
8984, 85, 87, 88mulge0d 11755 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗))
9086, 89ge0p1rpd 13025 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈ ℝ+)
9176, 90rpdivcld 13012 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℝ+)
9283, 91rpmulcld 13011 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℝ+)
9373, 92eqeltrd 2828 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) ∈ ℝ+)
9493adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹𝑗) ∈ ℝ+)
95 rpmulcl 12976 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℝ+𝑤 ∈ ℝ+) → (𝑗 · 𝑤) ∈ ℝ+)
9695adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+𝑤 ∈ ℝ+)) → (𝑗 · 𝑤) ∈ ℝ+)
9724, 94, 96seqcl 13987 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℝ+)
9897rpcnd 12997 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℂ)
9997rpne0d 13000 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ≠ 0)
10098, 99reccld 11951 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑛)) ∈ ℂ)
10122, 100mulcld 11194 . . . . . . . . 9 (𝑛 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ)
1026, 101fmpti 7084 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ
103102a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ)
104103ffvelcdmda 7056 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ)
105 fveq2 6858 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗))
106105eleq1d 2813 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1( · , 𝐹)‘𝑗) ∈ ℝ+))
107106, 97vtoclga 3543 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℝ+)
108107rpcnd 12997 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℂ)
109107rpne0d 13000 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ≠ 0)
11035, 108, 109divrecd 11961 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗))))
11111a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ∈ ℂ)
11264rpne0d 13000 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 2 ≠ 0)
11315a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ≠ 0)
11432, 111, 112, 113divcan6d 11977 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((2 / π) · (π / 2)) = 1)
115114eqcomd 2735 . . . . . . . . . 10 (𝑗 ∈ ℕ → 1 = ((2 / π) · (π / 2)))
116115oveq1d 7402 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 · (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))))
11732, 111, 113divcld 11958 . . . . . . . . . 10 (𝑗 ∈ ℕ → (2 / π) ∈ ℂ)
118111halfcld 12427 . . . . . . . . . 10 (𝑗 ∈ ℕ → (π / 2) ∈ ℂ)
119108, 109reccld 11951 . . . . . . . . . 10 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℂ)
120117, 118, 119mulassd 11197 . . . . . . . . 9 (𝑗 ∈ ℕ → (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
121110, 116, 1203eqtrd 2768 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
122 eqidd 2730 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))))
123105oveq2d 7403 . . . . . . . . . 10 (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
124123adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
125 id 22 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
126107rpreccld 13005 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℝ+)
127122, 124, 125, 126fvmptd 6975 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
128 eqidd 2730 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
129124oveq2d 7403 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
130118, 119mulcld 11194 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ)
131128, 129, 125, 130fvmptd 6975 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
132131oveq2d 7403 . . . . . . . 8 (𝑗 ∈ ℕ → ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
133121, 127, 1323eqtr4d 2774 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
134133adantl 481 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
1351, 2, 9, 17, 20, 104, 134climmulc2 15603 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) · 1))
136 2cn 12261 . . . . . . 7 2 ∈ ℂ
137136, 11, 15divcli 11924 . . . . . 6 (2 / π) ∈ ℂ
138137mulridi 11178 . . . . 5 ((2 / π) · 1) = (2 / π)
139135, 138breqtrdi 5148 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π))
140 2ne0 12290 . . . . . 6 2 ≠ 0
141136, 11, 140, 15divne0i 11930 . . . . 5 (2 / π) ≠ 0
142141a1i 11 . . . 4 (⊤ → (2 / π) ≠ 0)
143127, 119eqeltrd 2828 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ)
144108, 109recne0d 11952 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ≠ 0)
145127, 144eqnetrd 2992 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0)
146 nelsn 4630 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
147145, 146syl 17 . . . . . 6 (𝑗 ∈ ℕ → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
148143, 147eldifd 3925 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
149148adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
150108, 109recrecd 11955 . . . . . 6 (𝑗 ∈ ℕ → (1 / (1 / (seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗))
151122, 124, 125, 119fvmptd 6975 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
152151oveq2d 7403 . . . . . 6 (𝑗 ∈ ℕ → (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗))))
153 wallispi.2 . . . . . . 7 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
154105, 153, 97fvmpt3 6972 . . . . . 6 (𝑗 ∈ ℕ → (𝑊𝑗) = (seq1( · , 𝐹)‘𝑗))
155150, 152, 1543eqtr4rd 2775 . . . . 5 (𝑗 ∈ ℕ → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
156155adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
15718mptex 7197 . . . . . 6 (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ∈ V
158153, 157eqeltri 2824 . . . . 5 𝑊 ∈ V
159158a1i 11 . . . 4 (⊤ → 𝑊 ∈ V)
1601, 2, 139, 142, 149, 156, 159climrec 45601 . . 3 (⊤ → 𝑊 ⇝ (1 / (2 / π)))
161160mptru 1547 . 2 𝑊 ⇝ (1 / (2 / π))
162 recdiv 11888 . . 3 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / (2 / π)) = (π / 2))
163136, 140, 11, 15, 162mp4an 693 . 2 (1 / (2 / π)) = (π / 2)
164161, 163breqtri 5132 1 𝑊 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  {csn 4589   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cuz 12793  +crp 12951  (,)cioo 13306  ...cfz 13468  seqcseq 13966  cexp 14026  cli 15450  sincsin 16029  πcpi 16032  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  wallispi2  46071
  Copyright terms: Public domain W3C validator