Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Visualization version   GIF version

Theorem wallispi 46230
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispi.2 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
Assertion
Ref Expression
wallispi 𝑊 ⇝ (π / 2)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐹(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem wallispi
Dummy variables 𝑗 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12781 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12513 . . . 4 (⊤ → 1 ∈ ℤ)
3 wallispi.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
4 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
5 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1))))
6 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
7 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
83, 4, 5, 6, 7wallispilem5 46229 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1
98a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1)
10 2cnd 12214 . . . . . . 7 (⊤ → 2 ∈ ℂ)
11 picn 26414 . . . . . . . 8 π ∈ ℂ
1211a1i 11 . . . . . . 7 (⊤ → π ∈ ℂ)
13 pire 26413 . . . . . . . . 9 π ∈ ℝ
14 pipos 26415 . . . . . . . . 9 0 < π
1513, 14gt0ne0ii 11664 . . . . . . . 8 π ≠ 0
1615a1i 11 . . . . . . 7 (⊤ → π ≠ 0)
1710, 12, 16divcld 11908 . . . . . 6 (⊤ → (2 / π) ∈ ℂ)
18 nnex 12142 . . . . . . . 8 ℕ ∈ V
1918mptex 7166 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V
2019a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V)
2111a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → π ∈ ℂ)
2221halfcld 12377 . . . . . . . . . 10 (𝑛 ∈ ℕ → (π / 2) ∈ ℂ)
23 elnnuz 12782 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2423biimpi 216 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
25 oveq2 7363 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
2625oveq1d 7370 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1))
2725, 26oveq12d 7373 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1)))
2825oveq1d 7370 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
2925, 28oveq12d 7373 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1)))
3027, 29oveq12d 7373 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
31 elfznn 13460 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ)
32 2cnd 12214 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 2 ∈ ℂ)
33 nncn 12144 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3432, 33mulcld 11143 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℂ)
35 1cnd 11118 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 1 ∈ ℂ)
3634, 35subcld 11483 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℂ)
37 1red 11124 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 ∈ ℝ)
38 1t1e1 12293 . . . . . . . . . . . . . . . . . . . . . 22 (1 · 1) = 1
3937, 37remulcld 11153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) ∈ ℝ)
40 2re 12210 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 2 ∈ ℝ)
4241, 37remulcld 11153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ∈ ℝ)
43 nnre 12143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
4441, 43remulcld 11153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
45 1rp 12900 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ+
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ∈ ℝ+)
47 1lt2 12302 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 < 2)
4937, 41, 46, 48ltmul1dd 12995 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) < (2 · 1))
50 0le2 12238 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 0 ≤ 2)
52 nnge1 12164 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
5337, 43, 41, 51, 52lemul2ad 12073 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ≤ (2 · 𝑗))
5439, 42, 44, 49, 53ltletrd 11284 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (1 · 1) < (2 · 𝑗))
5538, 54eqbrtrrid 5131 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < (2 · 𝑗))
5637, 55gtned 11259 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (2 · 𝑗) ≠ 1)
5734, 35, 56subne0d 11492 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ≠ 0)
5834, 36, 57divcld 11908 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℂ)
5934, 35addcld 11142 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℂ)
60 0red 11126 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 ∈ ℝ)
6144, 37readdcld 11152 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
6246rpgt0d 12943 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 0 < 1)
63 2rp 12901 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
65 nnrp 12908 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
6664, 65rpmulcld 12956 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
6737, 66ltaddrp2d 12974 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
6860, 37, 61, 62, 67lttrd 11285 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
6960, 68gtned 11259 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
7034, 59, 69divcld 11908 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℂ)
7158, 70mulcld 11143 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7231, 71syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
733, 30, 31, 72fvmptd3 6961 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
7463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ+)
7531nnrpd 12938 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+)
7674, 75rpmulcld 12956 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ+)
7744, 37resubcld 11556 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ)
78 1m1e0 12208 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
7937, 44, 37, 55ltsub1dd 11740 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (1 − 1) < ((2 · 𝑗) − 1))
8078, 79eqbrtrrid 5131 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) − 1))
8177, 80elrpd 12937 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ+)
8231, 81syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈ ℝ+)
8376, 82rpdivcld 12957 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℝ+)
8440a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ)
8531nnred 12151 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ)
8684, 85remulcld 11153 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ)
8774rpge0d 12944 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 2)
8875rpge0d 12944 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗)
8984, 85, 87, 88mulge0d 11705 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗))
9086, 89ge0p1rpd 12970 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈ ℝ+)
9176, 90rpdivcld 12957 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℝ+)
9283, 91rpmulcld 12956 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℝ+)
9373, 92eqeltrd 2833 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) ∈ ℝ+)
9493adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹𝑗) ∈ ℝ+)
95 rpmulcl 12921 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℝ+𝑤 ∈ ℝ+) → (𝑗 · 𝑤) ∈ ℝ+)
9695adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+𝑤 ∈ ℝ+)) → (𝑗 · 𝑤) ∈ ℝ+)
9724, 94, 96seqcl 13936 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℝ+)
9897rpcnd 12942 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℂ)
9997rpne0d 12945 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ≠ 0)
10098, 99reccld 11901 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑛)) ∈ ℂ)
10122, 100mulcld 11143 . . . . . . . . 9 (𝑛 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ)
1026, 101fmpti 7054 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ
103102a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ)
104103ffvelcdmda 7026 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ)
105 fveq2 6831 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗))
106105eleq1d 2818 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1( · , 𝐹)‘𝑗) ∈ ℝ+))
107106, 97vtoclga 3529 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℝ+)
108107rpcnd 12942 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℂ)
109107rpne0d 12945 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ≠ 0)
11035, 108, 109divrecd 11911 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗))))
11111a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ∈ ℂ)
11264rpne0d 12945 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 2 ≠ 0)
11315a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ≠ 0)
11432, 111, 112, 113divcan6d 11927 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((2 / π) · (π / 2)) = 1)
115114eqcomd 2739 . . . . . . . . . 10 (𝑗 ∈ ℕ → 1 = ((2 / π) · (π / 2)))
116115oveq1d 7370 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 · (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))))
11732, 111, 113divcld 11908 . . . . . . . . . 10 (𝑗 ∈ ℕ → (2 / π) ∈ ℂ)
118111halfcld 12377 . . . . . . . . . 10 (𝑗 ∈ ℕ → (π / 2) ∈ ℂ)
119108, 109reccld 11901 . . . . . . . . . 10 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℂ)
120117, 118, 119mulassd 11146 . . . . . . . . 9 (𝑗 ∈ ℕ → (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
121110, 116, 1203eqtrd 2772 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
122 eqidd 2734 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))))
123105oveq2d 7371 . . . . . . . . . 10 (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
124123adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
125 id 22 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
126107rpreccld 12950 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℝ+)
127122, 124, 125, 126fvmptd 6945 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
128 eqidd 2734 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
129124oveq2d 7371 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
130118, 119mulcld 11143 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ)
131128, 129, 125, 130fvmptd 6945 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
132131oveq2d 7371 . . . . . . . 8 (𝑗 ∈ ℕ → ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
133121, 127, 1323eqtr4d 2778 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
134133adantl 481 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
1351, 2, 9, 17, 20, 104, 134climmulc2 15551 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) · 1))
136 2cn 12211 . . . . . . 7 2 ∈ ℂ
137136, 11, 15divcli 11874 . . . . . 6 (2 / π) ∈ ℂ
138137mulridi 11127 . . . . 5 ((2 / π) · 1) = (2 / π)
139135, 138breqtrdi 5136 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π))
140 2ne0 12240 . . . . . 6 2 ≠ 0
141136, 11, 140, 15divne0i 11880 . . . . 5 (2 / π) ≠ 0
142141a1i 11 . . . 4 (⊤ → (2 / π) ≠ 0)
143127, 119eqeltrd 2833 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ)
144108, 109recne0d 11902 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ≠ 0)
145127, 144eqnetrd 2996 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0)
146 nelsn 4620 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
147145, 146syl 17 . . . . . 6 (𝑗 ∈ ℕ → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
148143, 147eldifd 3909 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
149148adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
150108, 109recrecd 11905 . . . . . 6 (𝑗 ∈ ℕ → (1 / (1 / (seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗))
151122, 124, 125, 119fvmptd 6945 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
152151oveq2d 7371 . . . . . 6 (𝑗 ∈ ℕ → (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗))))
153 wallispi.2 . . . . . . 7 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
154105, 153, 97fvmpt3 6942 . . . . . 6 (𝑗 ∈ ℕ → (𝑊𝑗) = (seq1( · , 𝐹)‘𝑗))
155150, 152, 1543eqtr4rd 2779 . . . . 5 (𝑗 ∈ ℕ → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
156155adantl 481 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
15718mptex 7166 . . . . . 6 (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ∈ V
158153, 157eqeltri 2829 . . . . 5 𝑊 ∈ V
159158a1i 11 . . . 4 (⊤ → 𝑊 ∈ V)
1601, 2, 139, 142, 149, 156, 159climrec 45765 . . 3 (⊤ → 𝑊 ⇝ (1 / (2 / π)))
161160mptru 1548 . 2 𝑊 ⇝ (1 / (2 / π))
162 recdiv 11838 . . 3 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / (2 / π)) = (π / 2))
163136, 140, 11, 15, 162mp4an 693 . 2 (1 / (2 / π)) = (π / 2)
164161, 163breqtri 5120 1 𝑊 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  {csn 4577   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cuz 12742  +crp 12896  (,)cioo 13252  ...cfz 13414  seqcseq 13915  cexp 13975  cli 15398  sincsin 15977  πcpi 15980  citg 25566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cc 10337  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-ovol 25412  df-vol 25413  df-mbf 25567  df-itg1 25568  df-itg2 25569  df-ibl 25570  df-itg 25571  df-0p 25618  df-limc 25814  df-dv 25815
This theorem is referenced by:  wallispi2  46233
  Copyright terms: Public domain W3C validator