Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi Structured version   Visualization version   GIF version

Theorem wallispi 43106
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
wallispi.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispi.2 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
Assertion
Ref Expression
wallispi 𝑊 ⇝ (π / 2)
Distinct variable groups:   𝑘,𝑛   𝑛,𝐹
Allowed substitution hints:   𝐹(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem wallispi
Dummy variables 𝑗 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12326 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12057 . . . 4 (⊤ → 1 ∈ ℤ)
3 wallispi.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
4 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)
5 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘(2 · 𝑛)) / ((𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥)‘((2 · 𝑛) + 1))))
6 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
7 eqid 2758 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛))) = (𝑛 ∈ ℕ ↦ (((2 · 𝑛) + 1) / (2 · 𝑛)))
83, 4, 5, 6, 7wallispilem5 43105 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1
98a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) ⇝ 1)
10 2cnd 11757 . . . . . . 7 (⊤ → 2 ∈ ℂ)
11 picn 25156 . . . . . . . 8 π ∈ ℂ
1211a1i 11 . . . . . . 7 (⊤ → π ∈ ℂ)
13 pire 25155 . . . . . . . . 9 π ∈ ℝ
14 pipos 25157 . . . . . . . . 9 0 < π
1513, 14gt0ne0ii 11219 . . . . . . . 8 π ≠ 0
1615a1i 11 . . . . . . 7 (⊤ → π ≠ 0)
1710, 12, 16divcld 11459 . . . . . 6 (⊤ → (2 / π) ∈ ℂ)
18 nnex 11685 . . . . . . . 8 ℕ ∈ V
1918mptex 6982 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V
2019a1i 11 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ∈ V)
2111a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → π ∈ ℂ)
2221halfcld 11924 . . . . . . . . . 10 (𝑛 ∈ ℕ → (π / 2) ∈ ℂ)
23 elnnuz 12327 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
2423biimpi 219 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
25 oveq2 7163 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
2625oveq1d 7170 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1))
2725, 26oveq12d 7173 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑗) / ((2 · 𝑗) − 1)))
2825oveq1d 7170 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
2925, 28oveq12d 7173 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑗) / ((2 · 𝑗) + 1)))
3027, 29oveq12d 7173 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
31 elfznn 12990 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℕ)
32 2cnd 11757 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 2 ∈ ℂ)
33 nncn 11687 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3432, 33mulcld 10704 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℂ)
35 1cnd 10679 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 1 ∈ ℂ)
3634, 35subcld 11040 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℂ)
37 1red 10685 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 ∈ ℝ)
38 1t1e1 11841 . . . . . . . . . . . . . . . . . . . . . 22 (1 · 1) = 1
3937, 37remulcld 10714 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) ∈ ℝ)
40 2re 11753 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
4140a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 2 ∈ ℝ)
4241, 37remulcld 10714 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ∈ ℝ)
43 nnre 11686 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
4441, 43remulcld 10714 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
45 1rp 12439 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ+
4645a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ∈ ℝ+)
47 1lt2 11850 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 < 2)
4937, 41, 46, 48ltmul1dd 12532 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (1 · 1) < (2 · 1))
50 0le2 11781 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 0 ≤ 2)
52 nnge1 11707 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ ℕ → 1 ≤ 𝑗)
5337, 43, 41, 51, 52lemul2ad 11623 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → (2 · 1) ≤ (2 · 𝑗))
5439, 42, 44, 49, 53ltletrd 10843 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (1 · 1) < (2 · 𝑗))
5538, 54eqbrtrrid 5071 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < (2 · 𝑗))
5637, 55gtned 10818 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (2 · 𝑗) ≠ 1)
5734, 35, 56subne0d 11049 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ≠ 0)
5834, 36, 57divcld 11459 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℂ)
5934, 35addcld 10703 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℂ)
60 0red 10687 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 ∈ ℝ)
6144, 37readdcld 10713 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
6246rpgt0d 12480 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 0 < 1)
63 2rp 12440 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
65 nnrp 12446 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
6664, 65rpmulcld 12493 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
6737, 66ltaddrp2d 12511 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
6860, 37, 61, 62, 67lttrd 10844 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
6960, 68gtned 10818 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
7034, 59, 69divcld 11459 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℂ)
7158, 70mulcld 10704 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
7231, 71syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℂ)
733, 30, 31, 72fvmptd3 6786 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) = (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))))
7463a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ+)
7531nnrpd 12475 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ+)
7674, 75rpmulcld 12493 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ+)
7744, 37resubcld 11111 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ)
78 1m1e0 11751 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
7937, 44, 37, 55ltsub1dd 11295 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → (1 − 1) < ((2 · 𝑗) − 1))
8078, 79eqbrtrrid 5071 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) − 1))
8177, 80elrpd 12474 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → ((2 · 𝑗) − 1) ∈ ℝ+)
8231, 81syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) − 1) ∈ ℝ+)
8376, 82rpdivcld 12494 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) − 1)) ∈ ℝ+)
8440a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 2 ∈ ℝ)
8531nnred 11694 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 𝑗 ∈ ℝ)
8684, 85remulcld 10714 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → (2 · 𝑗) ∈ ℝ)
8774rpge0d 12481 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 2)
8875rpge0d 12481 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (1...𝑛) → 0 ≤ 𝑗)
8984, 85, 87, 88mulge0d 11260 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (1...𝑛) → 0 ≤ (2 · 𝑗))
9086, 89ge0p1rpd 12507 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) + 1) ∈ ℝ+)
9176, 90rpdivcld 12494 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑛) → ((2 · 𝑗) / ((2 · 𝑗) + 1)) ∈ ℝ+)
9283, 91rpmulcld 12493 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑛) → (((2 · 𝑗) / ((2 · 𝑗) − 1)) · ((2 · 𝑗) / ((2 · 𝑗) + 1))) ∈ ℝ+)
9373, 92eqeltrd 2852 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑛) → (𝐹𝑗) ∈ ℝ+)
9493adantl 485 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...𝑛)) → (𝐹𝑗) ∈ ℝ+)
95 rpmulcl 12458 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℝ+𝑤 ∈ ℝ+) → (𝑗 · 𝑤) ∈ ℝ+)
9695adantl 485 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ (𝑗 ∈ ℝ+𝑤 ∈ ℝ+)) → (𝑗 · 𝑤) ∈ ℝ+)
9724, 94, 96seqcl 13445 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℝ+)
9897rpcnd 12479 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ∈ ℂ)
9997rpne0d 12482 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (seq1( · , 𝐹)‘𝑛) ≠ 0)
10098, 99reccld 11452 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑛)) ∈ ℂ)
10122, 100mulcld 10704 . . . . . . . . 9 (𝑛 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) ∈ ℂ)
1026, 101fmpti 6872 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ
103102a1i 11 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))):ℕ⟶ℂ)
104103ffvelrnda 6847 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) ∈ ℂ)
105 fveq2 6662 . . . . . . . . . . . . 13 (𝑛 = 𝑗 → (seq1( · , 𝐹)‘𝑛) = (seq1( · , 𝐹)‘𝑗))
106105eleq1d 2836 . . . . . . . . . . . 12 (𝑛 = 𝑗 → ((seq1( · , 𝐹)‘𝑛) ∈ ℝ+ ↔ (seq1( · , 𝐹)‘𝑗) ∈ ℝ+))
107106, 97vtoclga 3494 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℝ+)
108107rpcnd 12479 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ∈ ℂ)
109107rpne0d 12482 . . . . . . . . . 10 (𝑗 ∈ ℕ → (seq1( · , 𝐹)‘𝑗) ≠ 0)
11035, 108, 109divrecd 11462 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = (1 · (1 / (seq1( · , 𝐹)‘𝑗))))
11111a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ∈ ℂ)
11264rpne0d 12482 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → 2 ≠ 0)
11315a1i 11 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → π ≠ 0)
11432, 111, 112, 113divcan6d 11478 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((2 / π) · (π / 2)) = 1)
115114eqcomd 2764 . . . . . . . . . 10 (𝑗 ∈ ℕ → 1 = ((2 / π) · (π / 2)))
116115oveq1d 7170 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 · (1 / (seq1( · , 𝐹)‘𝑗))) = (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))))
11732, 111, 113divcld 11459 . . . . . . . . . 10 (𝑗 ∈ ℕ → (2 / π) ∈ ℂ)
118111halfcld 11924 . . . . . . . . . 10 (𝑗 ∈ ℕ → (π / 2) ∈ ℂ)
119108, 109reccld 11452 . . . . . . . . . 10 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℂ)
120117, 118, 119mulassd 10707 . . . . . . . . 9 (𝑗 ∈ ℕ → (((2 / π) · (π / 2)) · (1 / (seq1( · , 𝐹)‘𝑗))) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
121110, 116, 1203eqtrd 2797 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
122 eqidd 2759 . . . . . . . . 9 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))))
123105oveq2d 7171 . . . . . . . . . 10 (𝑛 = 𝑗 → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
124123adantl 485 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (seq1( · , 𝐹)‘𝑛)) = (1 / (seq1( · , 𝐹)‘𝑗)))
125 id 22 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
126107rpreccld 12487 . . . . . . . . 9 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ∈ ℝ+)
127122, 124, 125, 126fvmptd 6770 . . . . . . . 8 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
128 eqidd 2759 . . . . . . . . . 10 (𝑗 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
129124oveq2d 7171 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
130118, 119mulcld 10704 . . . . . . . . . 10 (𝑗 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))) ∈ ℂ)
131128, 129, 125, 130fvmptd 6770 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗))))
132131oveq2d 7171 . . . . . . . 8 (𝑗 ∈ ℕ → ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)) = ((2 / π) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑗)))))
133121, 127, 1323eqtr4d 2803 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
134133adantl 485 . . . . . 6 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = ((2 / π) · ((𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))‘𝑗)))
1351, 2, 9, 17, 20, 104, 134climmulc2 15046 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ ((2 / π) · 1))
136 2cn 11754 . . . . . . 7 2 ∈ ℂ
137136, 11, 15divcli 11425 . . . . . 6 (2 / π) ∈ ℂ
138137mulid1i 10688 . . . . 5 ((2 / π) · 1) = (2 / π)
139135, 138breqtrdi 5076 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛))) ⇝ (2 / π))
140 2ne0 11783 . . . . . 6 2 ≠ 0
141136, 11, 140, 15divne0i 11431 . . . . 5 (2 / π) ≠ 0
142141a1i 11 . . . 4 (⊤ → (2 / π) ≠ 0)
143127, 119eqeltrd 2852 . . . . . 6 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ ℂ)
144108, 109recne0d 11453 . . . . . . . 8 (𝑗 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑗)) ≠ 0)
145127, 144eqnetrd 3018 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0)
146 nelsn 4565 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ≠ 0 → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
147145, 146syl 17 . . . . . 6 (𝑗 ∈ ℕ → ¬ ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ {0})
148143, 147eldifd 3871 . . . . 5 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
149148adantl 485 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) ∈ (ℂ ∖ {0}))
150108, 109recrecd 11456 . . . . . 6 (𝑗 ∈ ℕ → (1 / (1 / (seq1( · , 𝐹)‘𝑗))) = (seq1( · , 𝐹)‘𝑗))
151122, 124, 125, 119fvmptd 6770 . . . . . . 7 (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗) = (1 / (seq1( · , 𝐹)‘𝑗)))
152151oveq2d 7171 . . . . . 6 (𝑗 ∈ ℕ → (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)) = (1 / (1 / (seq1( · , 𝐹)‘𝑗))))
153 wallispi.2 . . . . . . 7 𝑊 = (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛))
154105, 153, 97fvmpt3 6767 . . . . . 6 (𝑗 ∈ ℕ → (𝑊𝑗) = (seq1( · , 𝐹)‘𝑗))
155150, 152, 1543eqtr4rd 2804 . . . . 5 (𝑗 ∈ ℕ → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
156155adantl 485 . . . 4 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝑊𝑗) = (1 / ((𝑛 ∈ ℕ ↦ (1 / (seq1( · , 𝐹)‘𝑛)))‘𝑗)))
15718mptex 6982 . . . . . 6 (𝑛 ∈ ℕ ↦ (seq1( · , 𝐹)‘𝑛)) ∈ V
158153, 157eqeltri 2848 . . . . 5 𝑊 ∈ V
159158a1i 11 . . . 4 (⊤ → 𝑊 ∈ V)
1601, 2, 139, 142, 149, 156, 159climrec 42639 . . 3 (⊤ → 𝑊 ⇝ (1 / (2 / π)))
161160mptru 1545 . 2 𝑊 ⇝ (1 / (2 / π))
162 recdiv 11389 . . 3 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / (2 / π)) = (π / 2))
163136, 140, 11, 15, 162mp4an 692 . 2 (1 / (2 / π)) = (π / 2)
164161, 163breqtri 5060 1 𝑊 ⇝ (π / 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wtru 1539  wcel 2111  wne 2951  Vcvv 3409  cdif 3857  {csn 4525   class class class wbr 5035  cmpt 5115  wf 6335  cfv 6339  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  cn 11679  2c2 11734  0cn0 11939  cuz 12287  +crp 12435  (,)cioo 12784  ...cfz 12944  seqcseq 13423  cexp 13484  cli 14894  sincsin 15470  πcpi 15473  citg 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cc 9900  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-symdif 4149  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-disj 5001  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-ofr 7411  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-omul 8122  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-fi 8913  df-sup 8944  df-inf 8945  df-oi 9012  df-dju 9368  df-card 9406  df-acn 9409  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-ioo 12788  df-ioc 12789  df-ico 12790  df-icc 12791  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-fac 13689  df-bc 13718  df-hash 13746  df-shft 14479  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-limsup 14881  df-clim 14898  df-rlim 14899  df-sum 15096  df-ef 15474  df-sin 15476  df-cos 15477  df-pi 15479  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-rest 16759  df-topn 16760  df-0g 16778  df-gsum 16779  df-topgen 16780  df-pt 16781  df-prds 16784  df-xrs 16838  df-qtop 16843  df-imas 16844  df-xps 16846  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-lp 21841  df-perf 21842  df-cn 21932  df-cnp 21933  df-haus 22020  df-cmp 22092  df-tx 22267  df-hmeo 22460  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-tms 23029  df-cncf 23584  df-ovol 24169  df-vol 24170  df-mbf 24324  df-itg1 24325  df-itg2 24326  df-ibl 24327  df-itg 24328  df-0p 24375  df-limc 24570  df-dv 24571
This theorem is referenced by:  wallispi2  43109
  Copyright terms: Public domain W3C validator