MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harval Structured version   Visualization version   GIF version

Theorem harval 9453
Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
harval (𝑋𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
Distinct variable group:   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem harval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝑋𝑉𝑋 ∈ V)
2 breq2 5097 . . . 4 (𝑥 = 𝑋 → (𝑦𝑥𝑦𝑋))
32rabbidv 3403 . . 3 (𝑥 = 𝑋 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝑋})
4 df-har 9450 . . 3 har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
5 hartogs 9437 . . 3 (𝑥 ∈ V → {𝑦 ∈ On ∣ 𝑦𝑥} ∈ On)
63, 4, 5fvmpt3 6939 . 2 (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
71, 6syl 17 1 (𝑋𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5093  Oncon0 6311  cfv 6486  cdom 8873  harchar 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-en 8876  df-dom 8877  df-oi 9403  df-har 9450
This theorem is referenced by:  elharval  9454  harword  9456  harwdom  9484  harval2  9897
  Copyright terms: Public domain W3C validator