| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harval | Structured version Visualization version GIF version | ||
| Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| harval | ⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 2 | breq2 5129 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝑋)) | |
| 3 | 2 | rabbidv 3428 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| 4 | df-har 9580 | . . 3 ⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | |
| 5 | hartogs 9567 | . . 3 ⊢ (𝑥 ∈ V → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥} ∈ On) | |
| 6 | 3, 4, 5 | fvmpt3 7001 | . 2 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3420 Vcvv 3464 class class class wbr 5125 Oncon0 6365 ‘cfv 6542 ≼ cdom 8966 harchar 9579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-en 8969 df-dom 8970 df-oi 9533 df-har 9580 |
| This theorem is referenced by: elharval 9584 harword 9586 harwdom 9614 harval2 10020 |
| Copyright terms: Public domain | W3C validator |