![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harval | Structured version Visualization version GIF version |
Description: Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
harval | ⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
2 | breq2 5151 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ 𝑋)) | |
3 | 2 | rabbidv 3441 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
4 | df-har 9548 | . . 3 ⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | |
5 | hartogs 9535 | . . 3 ⊢ (𝑥 ∈ V → {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥} ∈ On) | |
6 | 3, 4, 5 | fvmpt3 6998 | . 2 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 class class class wbr 5147 Oncon0 6361 ‘cfv 6540 ≼ cdom 8933 harchar 9547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-en 8936 df-dom 8937 df-oi 9501 df-har 9548 |
This theorem is referenced by: elharval 9552 harword 9554 harwdom 9582 harval2 9988 |
Copyright terms: Public domain | W3C validator |