MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit2 Structured version   Visualization version   GIF version

Theorem pwssplit2 19825
Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 pwssplit1.c . 2 𝐶 = (Base‘𝑍)
3 eqid 2798 . 2 (+g𝑌) = (+g𝑌)
4 eqid 2798 . 2 (+g𝑍) = (+g𝑍)
5 simp1 1133 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Grp)
6 simp2 1134 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
7 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
87pwsgrp 18203 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋) → 𝑌 ∈ Grp)
95, 6, 8syl2anc 587 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ Grp)
10 simp3 1135 . . . 4 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
116, 10ssexd 5192 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
12 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1312pwsgrp 18203 . . 3 ((𝑊 ∈ Grp ∧ 𝑉 ∈ V) → 𝑍 ∈ Grp)
145, 11, 13syl2anc 587 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ Grp)
15 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
167, 12, 1, 2, 15pwssplit0 19823 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
17 offres 7666 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
1817adantl 485 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
195adantr 484 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ Grp)
20 simpl2 1189 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑈𝑋)
21 simprl 770 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
22 simprr 772 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
23 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
247, 1, 19, 20, 21, 22, 23, 3pwsplusgval 16755 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) = (𝑎f (+g𝑊)𝑏))
2524reseq1d 5817 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝑎f (+g𝑊)𝑏) ↾ 𝑉))
2615fvtresfn 6747 . . . . . 6 (𝑎𝐵 → (𝐹𝑎) = (𝑎𝑉))
2715fvtresfn 6747 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
2826, 27oveqan12d 7154 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
2928adantl 485 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
3018, 25, 293eqtr4d 2843 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
311, 3grpcl 18103 . . . . . 6 ((𝑌 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
32313expb 1117 . . . . 5 ((𝑌 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
339, 32sylan 583 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
3415fvtresfn 6747 . . . 4 ((𝑎(+g𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3533, 34syl 17 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3611adantr 484 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑉 ∈ V)
3716ffvelrnda 6828 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
3837adantrr 716 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝐶)
3916ffvelrnda 6828 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
4039adantrl 715 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
4112, 2, 19, 36, 38, 40, 23, 4pwsplusgval 16755 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑍)(𝐹𝑏)) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
4230, 35, 413eqtr4d 2843 . 2 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝑍)(𝐹𝑏)))
431, 2, 3, 4, 9, 14, 16, 42isghmd 18359 1 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  cmpt 5110  cres 5521  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  s cpws 16712  Grpcgrp 18095   GrpHom cghm 18347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-ghm 18348
This theorem is referenced by:  pwssplit3  19826
  Copyright terms: Public domain W3C validator