MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit2 Structured version   Visualization version   GIF version

Theorem pwssplit2 21003
Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 pwssplit1.c . 2 𝐶 = (Base‘𝑍)
3 eqid 2733 . 2 (+g𝑌) = (+g𝑌)
4 eqid 2733 . 2 (+g𝑍) = (+g𝑍)
5 simp1 1136 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Grp)
6 simp2 1137 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
7 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
87pwsgrp 18973 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋) → 𝑌 ∈ Grp)
95, 6, 8syl2anc 584 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ Grp)
10 simp3 1138 . . . 4 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
116, 10ssexd 5266 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
12 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1312pwsgrp 18973 . . 3 ((𝑊 ∈ Grp ∧ 𝑉 ∈ V) → 𝑍 ∈ Grp)
145, 11, 13syl2anc 584 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ Grp)
15 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
167, 12, 1, 2, 15pwssplit0 21001 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
17 offres 7924 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
1817adantl 481 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
195adantr 480 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ Grp)
20 simpl2 1193 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑈𝑋)
21 simprl 770 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
22 simprr 772 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
23 eqid 2733 . . . . . 6 (+g𝑊) = (+g𝑊)
247, 1, 19, 20, 21, 22, 23, 3pwsplusgval 17402 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) = (𝑎f (+g𝑊)𝑏))
2524reseq1d 5934 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝑎f (+g𝑊)𝑏) ↾ 𝑉))
2615fvtresfn 6940 . . . . . 6 (𝑎𝐵 → (𝐹𝑎) = (𝑎𝑉))
2715fvtresfn 6940 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
2826, 27oveqan12d 7374 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
2928adantl 481 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
3018, 25, 293eqtr4d 2778 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
311, 3grpcl 18862 . . . . . 6 ((𝑌 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
32313expb 1120 . . . . 5 ((𝑌 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
339, 32sylan 580 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
3415fvtresfn 6940 . . . 4 ((𝑎(+g𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3533, 34syl 17 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3611adantr 480 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑉 ∈ V)
3716ffvelcdmda 7026 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
3837adantrr 717 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝐶)
3916ffvelcdmda 7026 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
4039adantrl 716 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
4112, 2, 19, 36, 38, 40, 23, 4pwsplusgval 17402 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑍)(𝐹𝑏)) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
4230, 35, 413eqtr4d 2778 . 2 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝑍)(𝐹𝑏)))
431, 2, 3, 4, 9, 14, 16, 42isghmd 19145 1 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  cmpt 5176  cres 5623  cfv 6489  (class class class)co 7355  f cof 7617  Basecbs 17127  +gcplusg 17168  s cpws 17357  Grpcgrp 18854   GrpHom cghm 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-prds 17358  df-pws 17360  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-ghm 19133
This theorem is referenced by:  pwssplit3  21004
  Copyright terms: Public domain W3C validator