MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit2 Structured version   Visualization version   GIF version

Theorem pwssplit2 20670
Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2 𝐵 = (Base‘𝑌)
2 pwssplit1.c . 2 𝐶 = (Base‘𝑍)
3 eqid 2732 . 2 (+g𝑌) = (+g𝑌)
4 eqid 2732 . 2 (+g𝑍) = (+g𝑍)
5 simp1 1136 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Grp)
6 simp2 1137 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
7 pwssplit1.y . . . 4 𝑌 = (𝑊s 𝑈)
87pwsgrp 18934 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋) → 𝑌 ∈ Grp)
95, 6, 8syl2anc 584 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑌 ∈ Grp)
10 simp3 1138 . . . 4 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
116, 10ssexd 5324 . . 3 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
12 pwssplit1.z . . . 4 𝑍 = (𝑊s 𝑉)
1312pwsgrp 18934 . . 3 ((𝑊 ∈ Grp ∧ 𝑉 ∈ V) → 𝑍 ∈ Grp)
145, 11, 13syl2anc 584 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝑍 ∈ Grp)
15 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
167, 12, 1, 2, 15pwssplit0 20668 . 2 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
17 offres 7969 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
1817adantl 482 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (+g𝑊)𝑏) ↾ 𝑉) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
195adantr 481 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑊 ∈ Grp)
20 simpl2 1192 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑈𝑋)
21 simprl 769 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
22 simprr 771 . . . . . 6 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
23 eqid 2732 . . . . . 6 (+g𝑊) = (+g𝑊)
247, 1, 19, 20, 21, 22, 23, 3pwsplusgval 17435 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) = (𝑎f (+g𝑊)𝑏))
2524reseq1d 5980 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝑎f (+g𝑊)𝑏) ↾ 𝑉))
2615fvtresfn 7000 . . . . . 6 (𝑎𝐵 → (𝐹𝑎) = (𝑎𝑉))
2715fvtresfn 7000 . . . . . 6 (𝑏𝐵 → (𝐹𝑏) = (𝑏𝑉))
2826, 27oveqan12d 7427 . . . . 5 ((𝑎𝐵𝑏𝐵) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
2928adantl 482 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)) = ((𝑎𝑉) ∘f (+g𝑊)(𝑏𝑉)))
3018, 25, 293eqtr4d 2782 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(+g𝑌)𝑏) ↾ 𝑉) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
311, 3grpcl 18826 . . . . . 6 ((𝑌 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
32313expb 1120 . . . . 5 ((𝑌 ∈ Grp ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
339, 32sylan 580 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑌)𝑏) ∈ 𝐵)
3415fvtresfn 7000 . . . 4 ((𝑎(+g𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3533, 34syl 17 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝑎(+g𝑌)𝑏) ↾ 𝑉))
3611adantr 481 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → 𝑉 ∈ V)
3716ffvelcdmda 7086 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐵) → (𝐹𝑎) ∈ 𝐶)
3837adantrr 715 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) ∈ 𝐶)
3916ffvelcdmda 7086 . . . . 5 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑏𝐵) → (𝐹𝑏) ∈ 𝐶)
4039adantrl 714 . . . 4 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) ∈ 𝐶)
4112, 2, 19, 36, 38, 40, 23, 4pwsplusgval 17435 . . 3 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑍)(𝐹𝑏)) = ((𝐹𝑎) ∘f (+g𝑊)(𝐹𝑏)))
4230, 35, 413eqtr4d 2782 . 2 (((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑌)𝑏)) = ((𝐹𝑎)(+g𝑍)(𝐹𝑏)))
431, 2, 3, 4, 9, 14, 16, 42isghmd 19100 1 ((𝑊 ∈ Grp ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  cmpt 5231  cres 5678  cfv 6543  (class class class)co 7408  f cof 7667  Basecbs 17143  +gcplusg 17196  s cpws 17391  Grpcgrp 18818   GrpHom cghm 19088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-pws 17394  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-ghm 19089
This theorem is referenced by:  pwssplit3  20671
  Copyright terms: Public domain W3C validator