Step | Hyp | Ref
| Expression |
1 | | pwssplit1.b |
. 2
⊢ 𝐵 = (Base‘𝑌) |
2 | | pwssplit1.c |
. 2
⊢ 𝐶 = (Base‘𝑍) |
3 | | eqid 2738 |
. 2
⊢
(+g‘𝑌) = (+g‘𝑌) |
4 | | eqid 2738 |
. 2
⊢
(+g‘𝑍) = (+g‘𝑍) |
5 | | simp1 1134 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ Grp) |
6 | | simp2 1135 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) |
7 | | pwssplit1.y |
. . . 4
⊢ 𝑌 = (𝑊 ↑s 𝑈) |
8 | 7 | pwsgrp 18602 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋) → 𝑌 ∈ Grp) |
9 | 5, 6, 8 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑌 ∈ Grp) |
10 | | simp3 1136 |
. . . 4
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) |
11 | 6, 10 | ssexd 5243 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
12 | | pwssplit1.z |
. . . 4
⊢ 𝑍 = (𝑊 ↑s 𝑉) |
13 | 12 | pwsgrp 18602 |
. . 3
⊢ ((𝑊 ∈ Grp ∧ 𝑉 ∈ V) → 𝑍 ∈ Grp) |
14 | 5, 11, 13 | syl2anc 583 |
. 2
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑍 ∈ Grp) |
15 | | pwssplit1.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
16 | 7, 12, 1, 2, 15 | pwssplit0 20235 |
. 2
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
17 | | offres 7799 |
. . . . 5
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝑎 ∘f
(+g‘𝑊)𝑏) ↾ 𝑉) = ((𝑎 ↾ 𝑉) ∘f
(+g‘𝑊)(𝑏 ↾ 𝑉))) |
18 | 17 | adantl 481 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎 ∘f
(+g‘𝑊)𝑏) ↾ 𝑉) = ((𝑎 ↾ 𝑉) ∘f
(+g‘𝑊)(𝑏 ↾ 𝑉))) |
19 | 5 | adantr 480 |
. . . . . 6
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑊 ∈ Grp) |
20 | | simpl2 1190 |
. . . . . 6
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑈 ∈ 𝑋) |
21 | | simprl 767 |
. . . . . 6
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
22 | | simprr 769 |
. . . . . 6
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
23 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
24 | 7, 1, 19, 20, 21, 22, 23, 3 | pwsplusgval 17118 |
. . . . 5
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑌)𝑏) = (𝑎 ∘f
(+g‘𝑊)𝑏)) |
25 | 24 | reseq1d 5879 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏) ↾ 𝑉) = ((𝑎 ∘f
(+g‘𝑊)𝑏) ↾ 𝑉)) |
26 | 15 | fvtresfn 6859 |
. . . . . 6
⊢ (𝑎 ∈ 𝐵 → (𝐹‘𝑎) = (𝑎 ↾ 𝑉)) |
27 | 15 | fvtresfn 6859 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 → (𝐹‘𝑏) = (𝑏 ↾ 𝑉)) |
28 | 26, 27 | oveqan12d 7274 |
. . . . 5
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎) ∘f
(+g‘𝑊)(𝐹‘𝑏)) = ((𝑎 ↾ 𝑉) ∘f
(+g‘𝑊)(𝑏 ↾ 𝑉))) |
29 | 28 | adantl 481 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎) ∘f
(+g‘𝑊)(𝐹‘𝑏)) = ((𝑎 ↾ 𝑉) ∘f
(+g‘𝑊)(𝑏 ↾ 𝑉))) |
30 | 18, 25, 29 | 3eqtr4d 2788 |
. . 3
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑌)𝑏) ↾ 𝑉) = ((𝐹‘𝑎) ∘f
(+g‘𝑊)(𝐹‘𝑏))) |
31 | 1, 3 | grpcl 18500 |
. . . . . 6
⊢ ((𝑌 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
32 | 31 | 3expb 1118 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
33 | 9, 32 | sylan 579 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑌)𝑏) ∈ 𝐵) |
34 | 15 | fvtresfn 6859 |
. . . 4
⊢ ((𝑎(+g‘𝑌)𝑏) ∈ 𝐵 → (𝐹‘(𝑎(+g‘𝑌)𝑏)) = ((𝑎(+g‘𝑌)𝑏) ↾ 𝑉)) |
35 | 33, 34 | syl 17 |
. . 3
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑌)𝑏)) = ((𝑎(+g‘𝑌)𝑏) ↾ 𝑉)) |
36 | 11 | adantr 480 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑉 ∈ V) |
37 | 16 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ 𝐶) |
38 | 37 | adantrr 713 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑎) ∈ 𝐶) |
39 | 16 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) ∈ 𝐶) |
40 | 39 | adantrl 712 |
. . . 4
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) ∈ 𝐶) |
41 | 12, 2, 19, 36, 38, 40, 23, 4 | pwsplusgval 17118 |
. . 3
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎)(+g‘𝑍)(𝐹‘𝑏)) = ((𝐹‘𝑎) ∘f
(+g‘𝑊)(𝐹‘𝑏))) |
42 | 30, 35, 41 | 3eqtr4d 2788 |
. 2
⊢ (((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑌)𝑏)) = ((𝐹‘𝑎)(+g‘𝑍)(𝐹‘𝑏))) |
43 | 1, 2, 3, 4, 9, 14,
16, 42 | isghmd 18758 |
1
⊢ ((𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 GrpHom 𝑍)) |