MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr0eopALT Structured version   Visualization version   GIF version

Theorem upgr0eopALT 29151
Description: Alternate proof of upgr0eop 29149, using the general theorem gropeld 29068 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 29149). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
upgr0eopALT (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)

Proof of Theorem upgr0eopALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑔 ∈ V
21a1i 11 . . . . 5 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V)
3 simpr 484 . . . . 5 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅)
42, 3upgr0e 29146 . . . 4 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)
54ax-gen 1793 . . 3 𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)
65a1i 11 . 2 (𝑉𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph))
7 id 22 . 2 (𝑉𝑊𝑉𝑊)
8 0ex 5325 . . 3 ∅ ∈ V
98a1i 11 . 2 (𝑉𝑊 → ∅ ∈ V)
106, 7, 9gropeld 29068 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-2 12356  df-vtx 29033  df-iedg 29034  df-upgr 29117  df-umgr 29118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator