Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr0eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr0eop 27007, using the general theorem gropeld 26926 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 27007). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr0eopALT | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3414 | . . . . . 6 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V) |
3 | simpr 489 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅) | |
4 | 2, 3 | upgr0e 27004 | . . . 4 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
5 | 4 | ax-gen 1798 | . . 3 ⊢ ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)) |
7 | id 22 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ 𝑊) | |
8 | 0ex 5178 | . . 3 ⊢ ∅ ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∅ ∈ V) |
10 | 6, 7, 9 | gropeld 26926 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∀wal 1537 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 〈cop 4529 ‘cfv 6336 Vtxcvtx 26889 iEdgciedg 26890 UPGraphcupgr 26973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-i2m1 10644 ax-1ne0 10645 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-1st 7694 df-2nd 7695 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-2 11738 df-vtx 26891 df-iedg 26892 df-upgr 26975 df-umgr 26976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |