Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr0eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr0eop 27465, using the general theorem gropeld 27384 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 27465). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr0eopALT | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3434 | . . . . . 6 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V) |
3 | simpr 484 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅) | |
4 | 2, 3 | upgr0e 27462 | . . . 4 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
5 | 4 | ax-gen 1801 | . . 3 ⊢ ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)) |
7 | id 22 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ 𝑊) | |
8 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∅ ∈ V) |
10 | 6, 7, 9 | gropeld 27384 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 〈cop 4572 ‘cfv 6430 Vtxcvtx 27347 iEdgciedg 27348 UPGraphcupgr 27431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-1st 7817 df-2nd 7818 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-2 12019 df-vtx 27349 df-iedg 27350 df-upgr 27433 df-umgr 27434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |