![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr0eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr0eop 29149, using the general theorem gropeld 29068 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 29149). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr0eopALT | ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . . 6 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V) |
3 | simpr 484 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅) | |
4 | 2, 3 | upgr0e 29146 | . . . 4 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
5 | 4 | ax-gen 1793 | . . 3 ⊢ ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)) |
7 | id 22 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ 𝑊) | |
8 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∅ ∈ V) |
10 | 6, 7, 9 | gropeld 29068 | 1 ⊢ (𝑉 ∈ 𝑊 → 〈𝑉, ∅〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 UPGraphcupgr 29115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-2 12356 df-vtx 29033 df-iedg 29034 df-upgr 29117 df-umgr 29118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |