MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr0eopALT Structured version   Visualization version   GIF version

Theorem upgr0eopALT 29100
Description: Alternate proof of upgr0eop 29098, using the general theorem gropeld 29017 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 29098). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
upgr0eopALT (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)

Proof of Theorem upgr0eopALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . . . 6 𝑔 ∈ V
21a1i 11 . . . . 5 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V)
3 simpr 484 . . . . 5 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅)
42, 3upgr0e 29095 . . . 4 (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)
54ax-gen 1795 . . 3 𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)
65a1i 11 . 2 (𝑉𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph))
7 id 22 . 2 (𝑉𝑊𝑉𝑊)
8 0ex 5282 . . 3 ∅ ∈ V
98a1i 11 . 2 (𝑉𝑊 → ∅ ∈ V)
106, 7, 9gropeld 29017 1 (𝑉𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cop 4612  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  UPGraphcupgr 29064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-i2m1 11202  ax-1ne0 11203  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-2 12308  df-vtx 28982  df-iedg 28983  df-upgr 29066  df-umgr 29067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator