![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr0eopALT | Structured version Visualization version GIF version |
Description: Alternate proof of upgr0eop 28363, using the general theorem gropeld 28282 to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr0eop 28363). (Contributed by AV, 11-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
upgr0eopALT | ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . . 6 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ V) |
3 | simpr 485 | . . . . 5 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → (iEdg‘𝑔) = ∅) | |
4 | 2, 3 | upgr0e 28360 | . . . 4 ⊢ (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
5 | 4 | ax-gen 1797 | . . 3 ⊢ ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = ∅) → 𝑔 ∈ UPGraph)) |
7 | id 22 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ 𝑊) | |
8 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∅ ∈ V) |
10 | 6, 7, 9 | gropeld 28282 | 1 ⊢ (𝑉 ∈ 𝑊 → ⟨𝑉, ∅⟩ ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 ⟨cop 4633 ‘cfv 6540 Vtxcvtx 28245 iEdgciedg 28246 UPGraphcupgr 28329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-i2m1 11174 ax-1ne0 11175 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-2 12271 df-vtx 28247 df-iedg 28248 df-upgr 28331 df-umgr 28332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |