MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrspanop Structured version   Visualization version   GIF version

Theorem umgrspanop 27693
Description: A spanning subgraph of a multigraph represented by an ordered pair is a multigraph. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrspanop (𝐺 ∈ UMGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UMGraph)

Proof of Theorem umgrspanop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 uhgrspanop.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vex 3438 . . . . . 6 𝑔 ∈ V
43a1i 11 . . . . 5 ((𝐺 ∈ UMGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ V)
5 simprl 767 . . . . 5 ((𝐺 ∈ UMGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (Vtx‘𝑔) = 𝑉)
6 simprr 769 . . . . 5 ((𝐺 ∈ UMGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (iEdg‘𝑔) = (𝐸𝐴))
7 simpl 482 . . . . 5 ((𝐺 ∈ UMGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝐺 ∈ UMGraph)
81, 2, 4, 5, 6, 7umgrspan 27689 . . . 4 ((𝐺 ∈ UMGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ UMGraph)
98ex 412 . . 3 (𝐺 ∈ UMGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UMGraph))
109alrimiv 1926 . 2 (𝐺 ∈ UMGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UMGraph))
111fvexi 6806 . . 3 𝑉 ∈ V
1211a1i 11 . 2 (𝐺 ∈ UMGraph → 𝑉 ∈ V)
132fvexi 6806 . . . 4 𝐸 ∈ V
1413resex 5942 . . 3 (𝐸𝐴) ∈ V
1514a1i 11 . 2 (𝐺 ∈ UMGraph → (𝐸𝐴) ∈ V)
1610, 12, 15gropeld 27431 1 (𝐺 ∈ UMGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  cop 4570  cres 5593  cfv 6447  Vtxcvtx 27394  iEdgciedg 27395  UMGraphcumgr 27479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-hash 14073  df-vtx 27396  df-iedg 27397  df-edg 27446  df-uhgr 27456  df-upgr 27480  df-umgr 27481  df-subgr 27663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator