| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrspanop | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrspanop | ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrspanop.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vex 3468 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ V) |
| 5 | simprl 770 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (Vtx‘𝑔) = 𝑉) | |
| 6 | simprr 772 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) | |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝐺 ∈ UPGraph) | |
| 8 | 1, 2, 4, 5, 6, 7 | upgrspan 29277 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ UPGraph) |
| 9 | 8 | ex 412 | . . 3 ⊢ (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
| 10 | 9 | alrimiv 1927 | . 2 ⊢ (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
| 11 | 1 | fvexi 6895 | . . 3 ⊢ 𝑉 ∈ V |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝑉 ∈ V) |
| 13 | 2 | fvexi 6895 | . . . 4 ⊢ 𝐸 ∈ V |
| 14 | 13 | resex 6021 | . . 3 ⊢ (𝐸 ↾ 𝐴) ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐴) ∈ V) |
| 16 | 10, 12, 15 | gropeld 29017 | 1 ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 ↾ cres 5661 ‘cfv 6536 Vtxcvtx 28980 iEdgciedg 28981 UPGraphcupgr 29064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1st 7993 df-2nd 7994 df-vtx 28982 df-iedg 28983 df-edg 29032 df-uhgr 29042 df-upgr 29066 df-subgr 29252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |