![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrspanop | ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vex 3466 | . . . . . 6 ⊢ 𝑔 ∈ V | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ V) |
5 | simprl 769 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (Vtx‘𝑔) = 𝑉) | |
6 | simprr 771 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) | |
7 | simpl 481 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝐺 ∈ UPGraph) | |
8 | 1, 2, 4, 5, 6, 7 | upgrspan 29229 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ UPGraph) |
9 | 8 | ex 411 | . . 3 ⊢ (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
10 | 9 | alrimiv 1923 | . 2 ⊢ (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
11 | 1 | fvexi 6915 | . . 3 ⊢ 𝑉 ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝑉 ∈ V) |
13 | 2 | fvexi 6915 | . . . 4 ⊢ 𝐸 ∈ V |
14 | 13 | resex 6038 | . . 3 ⊢ (𝐸 ↾ 𝐴) ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐴) ∈ V) |
16 | 10, 12, 15 | gropeld 28969 | 1 ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 〈cop 4639 ↾ cres 5684 ‘cfv 6554 Vtxcvtx 28932 iEdgciedg 28933 UPGraphcupgr 29016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-1st 8003 df-2nd 8004 df-vtx 28934 df-iedg 28935 df-edg 28984 df-uhgr 28994 df-upgr 29018 df-subgr 29204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |