MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspanop Structured version   Visualization version   GIF version

Theorem upgrspanop 28551
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrspanop (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)

Proof of Theorem upgrspanop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 uhgrspanop.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vex 3478 . . . . . 6 𝑔 ∈ V
43a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ V)
5 simprl 769 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (Vtx‘𝑔) = 𝑉)
6 simprr 771 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (iEdg‘𝑔) = (𝐸𝐴))
7 simpl 483 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝐺 ∈ UPGraph)
81, 2, 4, 5, 6, 7upgrspan 28547 . . . 4 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ UPGraph)
98ex 413 . . 3 (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
109alrimiv 1930 . 2 (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
111fvexi 6905 . . 3 𝑉 ∈ V
1211a1i 11 . 2 (𝐺 ∈ UPGraph → 𝑉 ∈ V)
132fvexi 6905 . . . 4 𝐸 ∈ V
1413resex 6029 . . 3 (𝐸𝐴) ∈ V
1514a1i 11 . 2 (𝐺 ∈ UPGraph → (𝐸𝐴) ∈ V)
1610, 12, 15gropeld 28290 1 (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cop 4634  cres 5678  cfv 6543  Vtxcvtx 28253  iEdgciedg 28254  UPGraphcupgr 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1st 7974  df-2nd 7975  df-vtx 28255  df-iedg 28256  df-edg 28305  df-uhgr 28315  df-upgr 28339  df-subgr 28522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator