MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspanop Structured version   Visualization version   GIF version

Theorem upgrspanop 29233
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrspanop (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)

Proof of Theorem upgrspanop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 uhgrspanop.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vex 3466 . . . . . 6 𝑔 ∈ V
43a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ V)
5 simprl 769 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (Vtx‘𝑔) = 𝑉)
6 simprr 771 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (iEdg‘𝑔) = (𝐸𝐴))
7 simpl 481 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝐺 ∈ UPGraph)
81, 2, 4, 5, 6, 7upgrspan 29229 . . . 4 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ UPGraph)
98ex 411 . . 3 (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
109alrimiv 1923 . 2 (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
111fvexi 6915 . . 3 𝑉 ∈ V
1211a1i 11 . 2 (𝐺 ∈ UPGraph → 𝑉 ∈ V)
132fvexi 6915 . . . 4 𝐸 ∈ V
1413resex 6038 . . 3 (𝐸𝐴) ∈ V
1514a1i 11 . 2 (𝐺 ∈ UPGraph → (𝐸𝐴) ∈ V)
1610, 12, 15gropeld 28969 1 (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cop 4639  cres 5684  cfv 6554  Vtxcvtx 28932  iEdgciedg 28933  UPGraphcupgr 29016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-1st 8003  df-2nd 8004  df-vtx 28934  df-iedg 28935  df-edg 28984  df-uhgr 28994  df-upgr 29018  df-subgr 29204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator