MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspanop Structured version   Visualization version   GIF version

Theorem upgrspanop 27797
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrspanop (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)

Proof of Theorem upgrspanop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 uhgrspanop.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vex 3444 . . . . . 6 𝑔 ∈ V
43a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ V)
5 simprl 768 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (Vtx‘𝑔) = 𝑉)
6 simprr 770 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (iEdg‘𝑔) = (𝐸𝐴))
7 simpl 483 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝐺 ∈ UPGraph)
81, 2, 4, 5, 6, 7upgrspan 27793 . . . 4 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ UPGraph)
98ex 413 . . 3 (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
109alrimiv 1929 . 2 (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
111fvexi 6825 . . 3 𝑉 ∈ V
1211a1i 11 . 2 (𝐺 ∈ UPGraph → 𝑉 ∈ V)
132fvexi 6825 . . . 4 𝐸 ∈ V
1413resex 5958 . . 3 (𝐸𝐴) ∈ V
1514a1i 11 . 2 (𝐺 ∈ UPGraph → (𝐸𝐴) ∈ V)
1610, 12, 15gropeld 27536 1 (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3440  cop 4576  cres 5609  cfv 6465  Vtxcvtx 27499  iEdgciedg 27500  UPGraphcupgr 27583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fv 6473  df-1st 7877  df-2nd 7878  df-vtx 27501  df-iedg 27502  df-edg 27551  df-uhgr 27561  df-upgr 27585  df-subgr 27768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator