Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrspanop | ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vex 3444 | . . . . . 6 ⊢ 𝑔 ∈ V | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ V) |
5 | simprl 768 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (Vtx‘𝑔) = 𝑉) | |
6 | simprr 770 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) | |
7 | simpl 483 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝐺 ∈ UPGraph) | |
8 | 1, 2, 4, 5, 6, 7 | upgrspan 27793 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ UPGraph) |
9 | 8 | ex 413 | . . 3 ⊢ (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
10 | 9 | alrimiv 1929 | . 2 ⊢ (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph)) |
11 | 1 | fvexi 6825 | . . 3 ⊢ 𝑉 ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝑉 ∈ V) |
13 | 2 | fvexi 6825 | . . . 4 ⊢ 𝐸 ∈ V |
14 | 13 | resex 5958 | . . 3 ⊢ (𝐸 ↾ 𝐴) ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐴) ∈ V) |
16 | 10, 12, 15 | gropeld 27536 | 1 ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 〈cop 4576 ↾ cres 5609 ‘cfv 6465 Vtxcvtx 27499 iEdgciedg 27500 UPGraphcupgr 27583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-1st 7877 df-2nd 7878 df-vtx 27501 df-iedg 27502 df-edg 27551 df-uhgr 27561 df-upgr 27585 df-subgr 27768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |