MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrspanop Structured version   Visualization version   GIF version

Theorem upgrspanop 29332
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrspanop (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)

Proof of Theorem upgrspanop
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 uhgrspanop.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . . . . 5 𝐸 = (iEdg‘𝐺)
3 vex 3492 . . . . . 6 𝑔 ∈ V
43a1i 11 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ V)
5 simprl 770 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (Vtx‘𝑔) = 𝑉)
6 simprr 772 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → (iEdg‘𝑔) = (𝐸𝐴))
7 simpl 482 . . . . 5 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝐺 ∈ UPGraph)
81, 2, 4, 5, 6, 7upgrspan 29328 . . . 4 ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴))) → 𝑔 ∈ UPGraph)
98ex 412 . . 3 (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
109alrimiv 1926 . 2 (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸𝐴)) → 𝑔 ∈ UPGraph))
111fvexi 6934 . . 3 𝑉 ∈ V
1211a1i 11 . 2 (𝐺 ∈ UPGraph → 𝑉 ∈ V)
132fvexi 6934 . . . 4 𝐸 ∈ V
1413resex 6058 . . 3 (𝐸𝐴) ∈ V
1514a1i 11 . 2 (𝐺 ∈ UPGraph → (𝐸𝐴) ∈ V)
1610, 12, 15gropeld 29068 1 (𝐺 ∈ UPGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cres 5702  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032  UPGraphcupgr 29115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1st 8030  df-2nd 8031  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-subgr 29303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator