MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgrop Structured version   Visualization version   GIF version

Theorem cplgrop 29364
Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)

Proof of Theorem cplgrop
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 29344 . . . . 5 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
4 edgval 28976 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
54a1i 11 . . . . . 6 (𝐺 ∈ ComplGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
6 simpl 482 . . . . . . . . . . . 12 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Vtx‘𝑔) = (Vtx‘𝐺))
76adantl 481 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Vtx‘𝑔) = (Vtx‘𝐺))
86difeq1d 4088 . . . . . . . . . . . . 13 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
98adantl 481 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
10 edgval 28976 . . . . . . . . . . . . . . . 16 (Edg‘𝑔) = ran (iEdg‘𝑔)
11 simpr 484 . . . . . . . . . . . . . . . . 17 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (iEdg‘𝑔) = (iEdg‘𝐺))
1211rneqd 5902 . . . . . . . . . . . . . . . 16 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
1310, 12eqtrid 2776 . . . . . . . . . . . . . . 15 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Edg‘𝑔) = ran (iEdg‘𝐺))
1413adantl 481 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = ran (iEdg‘𝐺))
15 simpl 482 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1614, 15eqtr4d 2767 . . . . . . . . . . . . 13 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = (Edg‘𝐺))
1716rexeqdv 3300 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
189, 17raleqbidv 3319 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
197, 18raleqbidv 3319 . . . . . . . . . 10 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
2019biimpar 477 . . . . . . . . 9 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
21 eqid 2729 . . . . . . . . . . 11 (Vtx‘𝑔) = (Vtx‘𝑔)
22 eqid 2729 . . . . . . . . . . 11 (Edg‘𝑔) = (Edg‘𝑔)
2321, 22iscplgredg 29344 . . . . . . . . . 10 (𝑔 ∈ V → (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒))
2423elv 3452 . . . . . . . . 9 (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
2520, 24sylibr 234 . . . . . . . 8 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → 𝑔 ∈ ComplGraph)
2625expcom 413 . . . . . . 7 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → 𝑔 ∈ ComplGraph))
2726expd 415 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → ((Edg‘𝐺) = ran (iEdg‘𝐺) → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
285, 27syl5com 31 . . . . 5 (𝐺 ∈ ComplGraph → (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
293, 28sylbid 240 . . . 4 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
3029pm2.43i 52 . . 3 (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
3130alrimiv 1927 . 2 (𝐺 ∈ ComplGraph → ∀𝑔(((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
32 fvexd 6873 . 2 (𝐺 ∈ ComplGraph → (Vtx‘𝐺) ∈ V)
33 fvexd 6873 . 2 (𝐺 ∈ ComplGraph → (iEdg‘𝐺) ∈ V)
3431, 32, 33gropeld 28960 1 (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591  cop 4595  ran crn 5639  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  ComplGraphccplgr 29336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-vtx 28925  df-iedg 28926  df-edg 28975  df-nbgr 29260  df-uvtx 29313  df-cplgr 29338
This theorem is referenced by:  cusgrop  29365
  Copyright terms: Public domain W3C validator