MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgrop Structured version   Visualization version   GIF version

Theorem cplgrop 27804
Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)

Proof of Theorem cplgrop
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 27784 . . . . 5 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
4 edgval 27419 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
54a1i 11 . . . . . 6 (𝐺 ∈ ComplGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
6 simpl 483 . . . . . . . . . . . 12 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Vtx‘𝑔) = (Vtx‘𝐺))
76adantl 482 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Vtx‘𝑔) = (Vtx‘𝐺))
86difeq1d 4056 . . . . . . . . . . . . 13 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
98adantl 482 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
10 edgval 27419 . . . . . . . . . . . . . . . 16 (Edg‘𝑔) = ran (iEdg‘𝑔)
11 simpr 485 . . . . . . . . . . . . . . . . 17 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (iEdg‘𝑔) = (iEdg‘𝐺))
1211rneqd 5847 . . . . . . . . . . . . . . . 16 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
1310, 12eqtrid 2790 . . . . . . . . . . . . . . 15 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Edg‘𝑔) = ran (iEdg‘𝐺))
1413adantl 482 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = ran (iEdg‘𝐺))
15 simpl 483 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1614, 15eqtr4d 2781 . . . . . . . . . . . . 13 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = (Edg‘𝐺))
1716rexeqdv 3349 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
189, 17raleqbidv 3336 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
197, 18raleqbidv 3336 . . . . . . . . . 10 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
2019biimpar 478 . . . . . . . . 9 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
21 eqid 2738 . . . . . . . . . . 11 (Vtx‘𝑔) = (Vtx‘𝑔)
22 eqid 2738 . . . . . . . . . . 11 (Edg‘𝑔) = (Edg‘𝑔)
2321, 22iscplgredg 27784 . . . . . . . . . 10 (𝑔 ∈ V → (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒))
2423elv 3438 . . . . . . . . 9 (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
2520, 24sylibr 233 . . . . . . . 8 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → 𝑔 ∈ ComplGraph)
2625expcom 414 . . . . . . 7 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → 𝑔 ∈ ComplGraph))
2726expd 416 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → ((Edg‘𝐺) = ran (iEdg‘𝐺) → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
285, 27syl5com 31 . . . . 5 (𝐺 ∈ ComplGraph → (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
293, 28sylbid 239 . . . 4 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
3029pm2.43i 52 . . 3 (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
3130alrimiv 1930 . 2 (𝐺 ∈ ComplGraph → ∀𝑔(((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
32 fvexd 6789 . 2 (𝐺 ∈ ComplGraph → (Vtx‘𝐺) ∈ V)
33 fvexd 6789 . 2 (𝐺 ∈ ComplGraph → (iEdg‘𝐺) ∈ V)
3431, 32, 33gropeld 27403 1 (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cop 4567  ran crn 5590  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  ComplGraphccplgr 27776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-vtx 27368  df-iedg 27369  df-edg 27418  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778
This theorem is referenced by:  cusgrop  27805
  Copyright terms: Public domain W3C validator