MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgrop Structured version   Visualization version   GIF version

Theorem cplgrop 29468
Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)

Proof of Theorem cplgrop
Dummy variables 𝑒 𝑔 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2734 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iscplgredg 29448 . . . . 5 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
4 edgval 29080 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
54a1i 11 . . . . . 6 (𝐺 ∈ ComplGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
6 simpl 482 . . . . . . . . . . . 12 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Vtx‘𝑔) = (Vtx‘𝐺))
76adantl 481 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Vtx‘𝑔) = (Vtx‘𝐺))
86difeq1d 4134 . . . . . . . . . . . . 13 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
98adantl 481 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → ((Vtx‘𝑔) ∖ {𝑣}) = ((Vtx‘𝐺) ∖ {𝑣}))
10 edgval 29080 . . . . . . . . . . . . . . . 16 (Edg‘𝑔) = ran (iEdg‘𝑔)
11 simpr 484 . . . . . . . . . . . . . . . . 17 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (iEdg‘𝑔) = (iEdg‘𝐺))
1211rneqd 5951 . . . . . . . . . . . . . . . 16 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → ran (iEdg‘𝑔) = ran (iEdg‘𝐺))
1310, 12eqtrid 2786 . . . . . . . . . . . . . . 15 (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → (Edg‘𝑔) = ran (iEdg‘𝐺))
1413adantl 481 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = ran (iEdg‘𝐺))
15 simpl 482 . . . . . . . . . . . . . 14 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
1614, 15eqtr4d 2777 . . . . . . . . . . . . 13 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (Edg‘𝑔) = (Edg‘𝐺))
1716rexeqdv 3324 . . . . . . . . . . . 12 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
189, 17raleqbidv 3343 . . . . . . . . . . 11 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
197, 18raleqbidv 3343 . . . . . . . . . 10 (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → (∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒 ↔ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒))
2019biimpar 477 . . . . . . . . 9 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
21 eqid 2734 . . . . . . . . . . 11 (Vtx‘𝑔) = (Vtx‘𝑔)
22 eqid 2734 . . . . . . . . . . 11 (Edg‘𝑔) = (Edg‘𝑔)
2321, 22iscplgredg 29448 . . . . . . . . . 10 (𝑔 ∈ V → (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒))
2423elv 3482 . . . . . . . . 9 (𝑔 ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘𝑔)∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒)
2520, 24sylibr 234 . . . . . . . 8 ((((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) ∧ ∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒) → 𝑔 ∈ ComplGraph)
2625expcom 413 . . . . . . 7 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Edg‘𝐺) = ran (iEdg‘𝐺) ∧ ((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺))) → 𝑔 ∈ ComplGraph))
2726expd 415 . . . . . 6 (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → ((Edg‘𝐺) = ran (iEdg‘𝐺) → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
285, 27syl5com 31 . . . . 5 (𝐺 ∈ ComplGraph → (∀𝑣 ∈ (Vtx‘𝐺)∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝑣})∃𝑒 ∈ (Edg‘𝐺){𝑣, 𝑛} ⊆ 𝑒 → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
293, 28sylbid 240 . . . 4 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph)))
3029pm2.43i 52 . . 3 (𝐺 ∈ ComplGraph → (((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
3130alrimiv 1924 . 2 (𝐺 ∈ ComplGraph → ∀𝑔(((Vtx‘𝑔) = (Vtx‘𝐺) ∧ (iEdg‘𝑔) = (iEdg‘𝐺)) → 𝑔 ∈ ComplGraph))
32 fvexd 6921 . 2 (𝐺 ∈ ComplGraph → (Vtx‘𝐺) ∈ V)
33 fvexd 6921 . 2 (𝐺 ∈ ComplGraph → (iEdg‘𝐺) ∈ V)
3431, 32, 33gropeld 29064 1 (𝐺 ∈ ComplGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  wss 3962  {csn 4630  {cpr 4632  cop 4636  ran crn 5689  cfv 6562  Vtxcvtx 29027  iEdgciedg 29028  Edgcedg 29078  ComplGraphccplgr 29440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-vtx 29029  df-iedg 29030  df-edg 29079  df-nbgr 29364  df-uvtx 29417  df-cplgr 29442
This theorem is referenced by:  cusgrop  29469
  Copyright terms: Public domain W3C validator