![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidd2 | Structured version Visualization version GIF version |
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18843. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
grpidd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd2.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd2.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd2.j | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpidd2 | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidd2.p | . . . . 5 ⊢ (𝜑 → + = (+g‘𝐺)) | |
2 | 1 | oveqd 7425 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = ( 0 (+g‘𝐺) 0 )) |
3 | oveq2 7416 | . . . . . 6 ⊢ (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 )) | |
4 | id 22 | . . . . . 6 ⊢ (𝑥 = 0 → 𝑥 = 0 ) | |
5 | 3, 4 | eqeq12d 2748 | . . . . 5 ⊢ (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 )) |
6 | grpidd2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
7 | 6 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 + 𝑥) = 𝑥) |
8 | grpidd2.z | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝐵) | |
9 | 5, 7, 8 | rspcdva 3613 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
10 | 2, 9 | eqtr3d 2774 | . . 3 ⊢ (𝜑 → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | grpidd2.j | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
12 | grpidd2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
13 | 8, 12 | eleqtrd 2835 | . . . 4 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
14 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2732 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | eqid 2732 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 14, 15, 16 | grpid 18859 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
18 | 11, 13, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
19 | 10, 18 | mpbid 231 | . 2 ⊢ (𝜑 → (0g‘𝐺) = 0 ) |
20 | 19 | eqcomd 2738 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 Grpcgrp 18818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 |
This theorem is referenced by: imasgrp2 18937 |
Copyright terms: Public domain | W3C validator |