| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidd2 | Structured version Visualization version GIF version | ||
| Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18897. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| grpidd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| grpidd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| grpidd2.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
| grpidd2.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| grpidd2.j | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| grpidd2 | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidd2.p | . . . . 5 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 2 | 1 | oveqd 7407 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = ( 0 (+g‘𝐺) 0 )) |
| 3 | oveq2 7398 | . . . . . 6 ⊢ (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 )) | |
| 4 | id 22 | . . . . . 6 ⊢ (𝑥 = 0 → 𝑥 = 0 ) | |
| 5 | 3, 4 | eqeq12d 2746 | . . . . 5 ⊢ (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 )) |
| 6 | grpidd2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
| 7 | 6 | ralrimiva 3126 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 + 𝑥) = 𝑥) |
| 8 | grpidd2.z | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝐵) | |
| 9 | 5, 7, 8 | rspcdva 3592 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
| 10 | 2, 9 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 11 | grpidd2.j | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 12 | grpidd2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 13 | 8, 12 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
| 14 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | eqid 2730 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 17 | 14, 15, 16 | grpid 18914 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
| 18 | 11, 13, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
| 19 | 10, 18 | mpbid 232 | . 2 ⊢ (𝜑 → (0g‘𝐺) = 0 ) |
| 20 | 19 | eqcomd 2736 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: imasgrp2 18994 |
| Copyright terms: Public domain | W3C validator |