Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidd2 | Structured version Visualization version GIF version |
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18582. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
grpidd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd2.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd2.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd2.j | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpidd2 | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidd2.p | . . . . 5 ⊢ (𝜑 → + = (+g‘𝐺)) | |
2 | 1 | oveqd 7285 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = ( 0 (+g‘𝐺) 0 )) |
3 | oveq2 7276 | . . . . . 6 ⊢ (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 )) | |
4 | id 22 | . . . . . 6 ⊢ (𝑥 = 0 → 𝑥 = 0 ) | |
5 | 3, 4 | eqeq12d 2755 | . . . . 5 ⊢ (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 )) |
6 | grpidd2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
7 | 6 | ralrimiva 3109 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 + 𝑥) = 𝑥) |
8 | grpidd2.z | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝐵) | |
9 | 5, 7, 8 | rspcdva 3562 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
10 | 2, 9 | eqtr3d 2781 | . . 3 ⊢ (𝜑 → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | grpidd2.j | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
12 | grpidd2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
13 | 8, 12 | eleqtrd 2842 | . . . 4 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
14 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2739 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | eqid 2739 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 14, 15, 16 | grpid 18596 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
18 | 11, 13, 17 | syl2anc 583 | . . 3 ⊢ (𝜑 → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
19 | 10, 18 | mpbid 231 | . 2 ⊢ (𝜑 → (0g‘𝐺) = 0 ) |
20 | 19 | eqcomd 2745 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Grpcgrp 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-riota 7225 df-ov 7271 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 |
This theorem is referenced by: imasgrp2 18671 |
Copyright terms: Public domain | W3C validator |