MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   GIF version

Theorem grpidd2 18882
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18863. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b (𝜑𝐵 = (Base‘𝐺))
grpidd2.p (𝜑+ = (+g𝐺))
grpidd2.z (𝜑0𝐵)
grpidd2.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd2.j (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpidd2 (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥, +   𝜑,𝑥   𝑥, 0
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5 (𝜑+ = (+g𝐺))
21oveqd 7358 . . . 4 (𝜑 → ( 0 + 0 ) = ( 0 (+g𝐺) 0 ))
3 oveq2 7349 . . . . . 6 (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 ))
4 id 22 . . . . . 6 (𝑥 = 0𝑥 = 0 )
53, 4eqeq12d 2746 . . . . 5 (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 ))
6 grpidd2.i . . . . . 6 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
76ralrimiva 3122 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 0 + 𝑥) = 𝑥)
8 grpidd2.z . . . . 5 (𝜑0𝐵)
95, 7, 8rspcdva 3576 . . . 4 (𝜑 → ( 0 + 0 ) = 0 )
102, 9eqtr3d 2767 . . 3 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
11 grpidd2.j . . . 4 (𝜑𝐺 ∈ Grp)
12 grpidd2.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
138, 12eleqtrd 2831 . . . 4 (𝜑0 ∈ (Base‘𝐺))
14 eqid 2730 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2730 . . . . 5 (+g𝐺) = (+g𝐺)
16 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
1714, 15, 16grpid 18880 . . . 4 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1811, 13, 17syl2anc 584 . . 3 (𝜑 → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1910, 18mpbid 232 . 2 (𝜑 → (0g𝐺) = 0 )
2019eqcomd 2736 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  0gc0g 17335  Grpcgrp 18838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-riota 7298  df-ov 7344  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841
This theorem is referenced by:  imasgrp2  18960
  Copyright terms: Public domain W3C validator