MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   GIF version

Theorem grpidd2 18916
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18897. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b (𝜑𝐵 = (Base‘𝐺))
grpidd2.p (𝜑+ = (+g𝐺))
grpidd2.z (𝜑0𝐵)
grpidd2.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd2.j (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpidd2 (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥, +   𝜑,𝑥   𝑥, 0
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5 (𝜑+ = (+g𝐺))
21oveqd 7407 . . . 4 (𝜑 → ( 0 + 0 ) = ( 0 (+g𝐺) 0 ))
3 oveq2 7398 . . . . . 6 (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 ))
4 id 22 . . . . . 6 (𝑥 = 0𝑥 = 0 )
53, 4eqeq12d 2746 . . . . 5 (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 ))
6 grpidd2.i . . . . . 6 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
76ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 0 + 𝑥) = 𝑥)
8 grpidd2.z . . . . 5 (𝜑0𝐵)
95, 7, 8rspcdva 3592 . . . 4 (𝜑 → ( 0 + 0 ) = 0 )
102, 9eqtr3d 2767 . . 3 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
11 grpidd2.j . . . 4 (𝜑𝐺 ∈ Grp)
12 grpidd2.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
138, 12eleqtrd 2831 . . . 4 (𝜑0 ∈ (Base‘𝐺))
14 eqid 2730 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2730 . . . . 5 (+g𝐺) = (+g𝐺)
16 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
1714, 15, 16grpid 18914 . . . 4 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1811, 13, 17syl2anc 584 . . 3 (𝜑 → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1910, 18mpbid 232 . 2 (𝜑 → (0g𝐺) = 0 )
2019eqcomd 2736 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875
This theorem is referenced by:  imasgrp2  18994
  Copyright terms: Public domain W3C validator