Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidd2 | Structured version Visualization version GIF version |
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18668. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
grpidd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
grpidd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
grpidd2.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
grpidd2.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
grpidd2.j | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
grpidd2 | ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidd2.p | . . . . 5 ⊢ (𝜑 → + = (+g‘𝐺)) | |
2 | 1 | oveqd 7330 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = ( 0 (+g‘𝐺) 0 )) |
3 | oveq2 7321 | . . . . . 6 ⊢ (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 )) | |
4 | id 22 | . . . . . 6 ⊢ (𝑥 = 0 → 𝑥 = 0 ) | |
5 | 3, 4 | eqeq12d 2753 | . . . . 5 ⊢ (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 )) |
6 | grpidd2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
7 | 6 | ralrimiva 3140 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 0 + 𝑥) = 𝑥) |
8 | grpidd2.z | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝐵) | |
9 | 5, 7, 8 | rspcdva 3571 | . . . 4 ⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
10 | 2, 9 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | grpidd2.j | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
12 | grpidd2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
13 | 8, 12 | eleqtrd 2840 | . . . 4 ⊢ (𝜑 → 0 ∈ (Base‘𝐺)) |
14 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 14, 15, 16 | grpid 18682 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
18 | 11, 13, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (( 0 (+g‘𝐺) 0 ) = 0 ↔ (0g‘𝐺) = 0 )) |
19 | 10, 18 | mpbid 231 | . 2 ⊢ (𝜑 → (0g‘𝐺) = 0 ) |
20 | 19 | eqcomd 2743 | 1 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 +gcplusg 17029 0gc0g 17217 Grpcgrp 18644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-iota 6415 df-fun 6465 df-fv 6471 df-riota 7270 df-ov 7316 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 |
This theorem is referenced by: imasgrp2 18757 |
Copyright terms: Public domain | W3C validator |