MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   GIF version

Theorem grpidd2 18960
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18941. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b (𝜑𝐵 = (Base‘𝐺))
grpidd2.p (𝜑+ = (+g𝐺))
grpidd2.z (𝜑0𝐵)
grpidd2.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd2.j (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpidd2 (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥, +   𝜑,𝑥   𝑥, 0
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5 (𝜑+ = (+g𝐺))
21oveqd 7422 . . . 4 (𝜑 → ( 0 + 0 ) = ( 0 (+g𝐺) 0 ))
3 oveq2 7413 . . . . . 6 (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 ))
4 id 22 . . . . . 6 (𝑥 = 0𝑥 = 0 )
53, 4eqeq12d 2751 . . . . 5 (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 ))
6 grpidd2.i . . . . . 6 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
76ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 0 + 𝑥) = 𝑥)
8 grpidd2.z . . . . 5 (𝜑0𝐵)
95, 7, 8rspcdva 3602 . . . 4 (𝜑 → ( 0 + 0 ) = 0 )
102, 9eqtr3d 2772 . . 3 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
11 grpidd2.j . . . 4 (𝜑𝐺 ∈ Grp)
12 grpidd2.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
138, 12eleqtrd 2836 . . . 4 (𝜑0 ∈ (Base‘𝐺))
14 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
16 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
1714, 15, 16grpid 18958 . . . 4 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1811, 13, 17syl2anc 584 . . 3 (𝜑 → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1910, 18mpbid 232 . 2 (𝜑 → (0g𝐺) = 0 )
2019eqcomd 2741 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919
This theorem is referenced by:  imasgrp2  19038
  Copyright terms: Public domain W3C validator