MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd2 Structured version   Visualization version   GIF version

Theorem grpidd2 18684
Description: Deduce the identity element of a group from its properties. Useful in conjunction with isgrpd 18668. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
grpidd2.b (𝜑𝐵 = (Base‘𝐺))
grpidd2.p (𝜑+ = (+g𝐺))
grpidd2.z (𝜑0𝐵)
grpidd2.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
grpidd2.j (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
grpidd2 (𝜑0 = (0g𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥, +   𝜑,𝑥   𝑥, 0
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem grpidd2
StepHypRef Expression
1 grpidd2.p . . . . 5 (𝜑+ = (+g𝐺))
21oveqd 7330 . . . 4 (𝜑 → ( 0 + 0 ) = ( 0 (+g𝐺) 0 ))
3 oveq2 7321 . . . . . 6 (𝑥 = 0 → ( 0 + 𝑥) = ( 0 + 0 ))
4 id 22 . . . . . 6 (𝑥 = 0𝑥 = 0 )
53, 4eqeq12d 2753 . . . . 5 (𝑥 = 0 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 0 ) = 0 ))
6 grpidd2.i . . . . . 6 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
76ralrimiva 3140 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 0 + 𝑥) = 𝑥)
8 grpidd2.z . . . . 5 (𝜑0𝐵)
95, 7, 8rspcdva 3571 . . . 4 (𝜑 → ( 0 + 0 ) = 0 )
102, 9eqtr3d 2779 . . 3 (𝜑 → ( 0 (+g𝐺) 0 ) = 0 )
11 grpidd2.j . . . 4 (𝜑𝐺 ∈ Grp)
12 grpidd2.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
138, 12eleqtrd 2840 . . . 4 (𝜑0 ∈ (Base‘𝐺))
14 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
16 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
1714, 15, 16grpid 18682 . . . 4 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1811, 13, 17syl2anc 584 . . 3 (𝜑 → (( 0 (+g𝐺) 0 ) = 0 ↔ (0g𝐺) = 0 ))
1910, 18mpbid 231 . 2 (𝜑 → (0g𝐺) = 0 )
2019eqcomd 2743 1 (𝜑0 = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  cfv 6463  (class class class)co 7313  Basecbs 16979  +gcplusg 17029  0gc0g 17217  Grpcgrp 18644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-iota 6415  df-fun 6465  df-fv 6471  df-riota 7270  df-ov 7316  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-grp 18647
This theorem is referenced by:  imasgrp2  18757
  Copyright terms: Public domain W3C validator