| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isgrpid2 | Structured version Visualization version GIF version | ||
| Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinveu.p | ⊢ + = (+g‘𝐺) |
| grpinveu.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| isgrpid2 | ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinveu.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpinveu.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grpid 18880 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 ↔ 0 = 𝑍)) |
| 5 | 4 | biimpd 229 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 → 0 = 𝑍)) |
| 6 | 5 | expimpd 453 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍)) |
| 7 | 1, 3 | grpidcl 18870 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 8 | 1, 2, 3 | grplid 18872 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
| 9 | 7, 8 | mpdan 687 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
| 10 | 7, 9 | jca 511 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 )) |
| 11 | eleq1 2817 | . . . 4 ⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵)) | |
| 12 | id 22 | . . . . . 6 ⊢ ( 0 = 𝑍 → 0 = 𝑍) | |
| 13 | 12, 12 | oveq12d 7359 | . . . . 5 ⊢ ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍)) |
| 14 | 13, 12 | eqeq12d 2746 | . . . 4 ⊢ ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍)) |
| 15 | 11, 14 | anbi12d 632 | . . 3 ⊢ ( 0 = 𝑍 → (( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
| 16 | 10, 15 | syl5ibcom 245 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
| 17 | 6, 16 | impbid 212 | 1 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-riota 7298 df-ov 7344 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 |
| This theorem is referenced by: drngid2 20660 dchr1 27188 rloc0g 33228 erngdvlem4 41009 erngdvlem4-rN 41017 |
| Copyright terms: Public domain | W3C validator |