Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isgrpid2 | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
isgrpid2 | ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinveu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinveu.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpinveu.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grpid 18530 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 ↔ 0 = 𝑍)) |
5 | 4 | biimpd 228 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 → 0 = 𝑍)) |
6 | 5 | expimpd 453 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍)) |
7 | 1, 3 | grpidcl 18522 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
8 | 1, 2, 3 | grplid 18524 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
9 | 7, 8 | mpdan 683 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
10 | 7, 9 | jca 511 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 )) |
11 | eleq1 2826 | . . . 4 ⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵)) | |
12 | id 22 | . . . . . 6 ⊢ ( 0 = 𝑍 → 0 = 𝑍) | |
13 | 12, 12 | oveq12d 7273 | . . . . 5 ⊢ ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍)) |
14 | 13, 12 | eqeq12d 2754 | . . . 4 ⊢ ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍)) |
15 | 11, 14 | anbi12d 630 | . . 3 ⊢ ( 0 = 𝑍 → (( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
16 | 10, 15 | syl5ibcom 244 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
17 | 6, 16 | impbid 211 | 1 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 |
This theorem is referenced by: drngid2 19922 dchr1 26310 erngdvlem4 38932 erngdvlem4-rN 38940 |
Copyright terms: Public domain | W3C validator |