MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpid2 Structured version   Visualization version   GIF version

Theorem isgrpid2 18908
Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinveu.b 𝐵 = (Base‘𝐺)
grpinveu.p + = (+g𝐺)
grpinveu.o 0 = (0g𝐺)
Assertion
Ref Expression
isgrpid2 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍))

Proof of Theorem isgrpid2
StepHypRef Expression
1 grpinveu.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinveu.p . . . . 5 + = (+g𝐺)
3 grpinveu.o . . . . 5 0 = (0g𝐺)
41, 2, 3grpid 18907 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((𝑍 + 𝑍) = 𝑍0 = 𝑍))
54biimpd 229 . . 3 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((𝑍 + 𝑍) = 𝑍0 = 𝑍))
65expimpd 453 . 2 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍))
71, 3grpidcl 18897 . . . 4 (𝐺 ∈ Grp → 0𝐵)
81, 2, 3grplid 18899 . . . . 5 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 + 0 ) = 0 )
97, 8mpdan 687 . . . 4 (𝐺 ∈ Grp → ( 0 + 0 ) = 0 )
107, 9jca 511 . . 3 (𝐺 ∈ Grp → ( 0𝐵 ∧ ( 0 + 0 ) = 0 ))
11 eleq1 2816 . . . 4 ( 0 = 𝑍 → ( 0𝐵𝑍𝐵))
12 id 22 . . . . . 6 ( 0 = 𝑍0 = 𝑍)
1312, 12oveq12d 7405 . . . . 5 ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍))
1413, 12eqeq12d 2745 . . . 4 ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍))
1511, 14anbi12d 632 . . 3 ( 0 = 𝑍 → (( 0𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍)))
1610, 15syl5ibcom 245 . 2 (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍)))
176, 16impbid 212 1 (𝐺 ∈ Grp → ((𝑍𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868
This theorem is referenced by:  drngid2  20661  dchr1  27168  rloc0g  33222  erngdvlem4  40985  erngdvlem4-rN  40993
  Copyright terms: Public domain W3C validator