Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isgrpid2 | Structured version Visualization version GIF version |
Description: Properties showing that an element 𝑍 is the identity element of a group. (Contributed by NM, 7-Aug-2013.) |
Ref | Expression |
---|---|
grpinveu.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinveu.p | ⊢ + = (+g‘𝐺) |
grpinveu.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
isgrpid2 | ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinveu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinveu.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpinveu.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grpid 18711 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 ↔ 0 = 𝑍)) |
5 | 4 | biimpd 228 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑍) = 𝑍 → 0 = 𝑍)) |
6 | 5 | expimpd 455 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) → 0 = 𝑍)) |
7 | 1, 3 | grpidcl 18703 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
8 | 1, 2, 3 | grplid 18705 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
9 | 7, 8 | mpdan 685 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 + 0 ) = 0 ) |
10 | 7, 9 | jca 513 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 )) |
11 | eleq1 2825 | . . . 4 ⊢ ( 0 = 𝑍 → ( 0 ∈ 𝐵 ↔ 𝑍 ∈ 𝐵)) | |
12 | id 22 | . . . . . 6 ⊢ ( 0 = 𝑍 → 0 = 𝑍) | |
13 | 12, 12 | oveq12d 7359 | . . . . 5 ⊢ ( 0 = 𝑍 → ( 0 + 0 ) = (𝑍 + 𝑍)) |
14 | 13, 12 | eqeq12d 2753 | . . . 4 ⊢ ( 0 = 𝑍 → (( 0 + 0 ) = 0 ↔ (𝑍 + 𝑍) = 𝑍)) |
15 | 11, 14 | anbi12d 632 | . . 3 ⊢ ( 0 = 𝑍 → (( 0 ∈ 𝐵 ∧ ( 0 + 0 ) = 0 ) ↔ (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
16 | 10, 15 | syl5ibcom 245 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 = 𝑍 → (𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍))) |
17 | 6, 16 | impbid 211 | 1 ⊢ (𝐺 ∈ Grp → ((𝑍 ∈ 𝐵 ∧ (𝑍 + 𝑍) = 𝑍) ↔ 0 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ‘cfv 6483 (class class class)co 7341 Basecbs 17009 +gcplusg 17059 0gc0g 17247 Grpcgrp 18673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-iota 6435 df-fun 6485 df-fv 6491 df-riota 7297 df-ov 7344 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 |
This theorem is referenced by: drngid2 20111 dchr1 26510 erngdvlem4 39310 erngdvlem4-rN 39318 |
Copyright terms: Public domain | W3C validator |