MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd Structured version   Visualization version   GIF version

Theorem isgrpd 18104
Description: Deduce a group from its properties. Unlike isgrpd2 18102, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b (𝜑𝐵 = (Base‘𝐺))
isgrpd.p (𝜑+ = (+g𝐺))
isgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpd.z (𝜑0𝐵)
isgrpd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
isgrpd.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝑁   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd.c . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 isgrpd.a . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
5 isgrpd.z . 2 (𝜑0𝐵)
6 isgrpd.i . 2 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
7 isgrpd.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
8 isgrpd.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
9 oveq1 7140 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
109eqeq1d 2822 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
1110rspcev 3602 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
127, 8, 11syl2anc 586 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
131, 2, 3, 4, 5, 6, 12isgrpde 18103 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3126  cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  Grpcgrp 18082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-iota 6290  df-fun 6333  df-fv 6339  df-riota 7091  df-ov 7136  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085
This theorem is referenced by:  isgrpi  18105  issubg2  18273  symggrp  18507  isdrngd  19503  psrgrp  20154  cnlmod  23724  dchrabl  25817  motgrp  26316  ldualgrplem  36317  tgrpgrplem  37921  erngdvlem1  38160  erngdvlem1-rN  38168  dvhgrp  38279  mendring  39929
  Copyright terms: Public domain W3C validator