Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngone0 Structured version   Visualization version   GIF version

Theorem rngone0 37877
Description: The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngone0.1 𝐺 = (1st𝑅)
rngone0.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngone0 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)

Proof of Theorem rngone0
StepHypRef Expression
1 rngone0.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 37876 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 rngone0.2 . . 3 𝑋 = ran 𝐺
43grpon0 30449 . 2 (𝐺 ∈ GrpOp → 𝑋 ≠ ∅)
52, 4syl 17 1 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2931  c0 4313  ran crn 5666  cfv 6541  1st c1st 7994  GrpOpcgr 30436  RingOpscrngo 37860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-ov 7416  df-1st 7996  df-2nd 7997  df-grpo 30440  df-ablo 30492  df-rngo 37861
This theorem is referenced by:  rngoueqz  37906
  Copyright terms: Public domain W3C validator