Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngone0 | Structured version Visualization version GIF version |
Description: The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngone0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngone0.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngone0 | ⊢ (𝑅 ∈ RingOps → 𝑋 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngone0.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 36224 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | rngone0.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 3 | grpon0 29218 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑅 ∈ RingOps → 𝑋 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∅c0 4277 ran crn 5628 ‘cfv 6488 1st c1st 7906 GrpOpcgr 29205 RingOpscrngo 36208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-ov 7349 df-1st 7908 df-2nd 7909 df-grpo 29209 df-ablo 29261 df-rngo 36209 |
This theorem is referenced by: rngoueqz 36254 |
Copyright terms: Public domain | W3C validator |