Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngone0 Structured version   Visualization version   GIF version

Theorem rngone0 36225
Description: The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngone0.1 𝐺 = (1st𝑅)
rngone0.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngone0 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)

Proof of Theorem rngone0
StepHypRef Expression
1 rngone0.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 36224 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 rngone0.2 . . 3 𝑋 = ran 𝐺
43grpon0 29218 . 2 (𝐺 ∈ GrpOp → 𝑋 ≠ ∅)
52, 4syl 17 1 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2941  c0 4277  ran crn 5628  cfv 6488  1st c1st 7906  GrpOpcgr 29205  RingOpscrngo 36208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-fo 6494  df-fv 6496  df-ov 7349  df-1st 7908  df-2nd 7909  df-grpo 29209  df-ablo 29261  df-rngo 36209
This theorem is referenced by:  rngoueqz  36254
  Copyright terms: Public domain W3C validator