| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoass | Structured version Visualization version GIF version | ||
| Description: A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| grpoass | ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpfo.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | 1 | isgrpo 30483 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) |
| 3 | 2 | ibi 267 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
| 4 | 3 | simp2d 1143 | . 2 ⊢ (𝐺 ∈ GrpOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
| 5 | oveq1 7417 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
| 6 | 5 | oveq1d 7425 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝑦)𝐺𝑧)) |
| 7 | oveq1 7417 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝑦𝐺𝑧))) | |
| 8 | 6, 7 | eqeq12d 2752 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧)))) |
| 9 | oveq2 7418 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
| 10 | 9 | oveq1d 7425 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝑧)) |
| 11 | oveq1 7417 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧)) | |
| 12 | 11 | oveq2d 7426 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝑧))) |
| 13 | 10, 12 | eqeq12d 2752 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧)))) |
| 14 | oveq2 7418 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝐶)) | |
| 15 | oveq2 7418 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶)) | |
| 16 | 15 | oveq2d 7426 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝐶))) |
| 17 | 14, 16 | eqeq12d 2752 | . . 3 ⊢ (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))) |
| 18 | 8, 13, 17 | rspc3v 3622 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))) |
| 19 | 4, 18 | mpan9 506 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 × cxp 5657 ran crn 5660 ⟶wf 6532 (class class class)co 7410 GrpOpcgr 30475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-ov 7413 df-grpo 30479 |
| This theorem is referenced by: grpoidinvlem1 30490 grpoidinvlem2 30491 grpoidinvlem4 30493 grporcan 30504 grpoinvid1 30514 grpoinvid2 30515 grpolcan 30516 grpoinvop 30519 grpomuldivass 30527 grponpcan 30529 ablo32 30535 ablo4 30536 vcm 30562 nvass 30608 hhssabloilem 31247 rngoaass 37943 |
| Copyright terms: Public domain | W3C validator |