MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoass Structured version   Visualization version   GIF version

Theorem grpoass 30023
Description: A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoass ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))

Proof of Theorem grpoass
Dummy variables 𝑥 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . 5 𝑋 = ran 𝐺
21isgrpo 30017 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
32ibi 266 . . 3 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
43simp2d 1141 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
5 oveq1 7418 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
65oveq1d 7426 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝑦)𝐺𝑧))
7 oveq1 7418 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝑦𝐺𝑧)))
86, 7eqeq12d 2746 . . 3 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧))))
9 oveq2 7419 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
109oveq1d 7426 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝑧))
11 oveq1 7418 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 7427 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝑧)))
1310, 12eqeq12d 2746 . . 3 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧))))
14 oveq2 7419 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝐶))
15 oveq2 7419 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1615oveq2d 7427 . . . 4 (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝐶)))
1714, 16eqeq12d 2746 . . 3 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
188, 13, 17rspc3v 3626 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
194, 18mpan9 505 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068   × cxp 5673  ran crn 5676  wf 6538  (class class class)co 7411  GrpOpcgr 30009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-ov 7414  df-grpo 30013
This theorem is referenced by:  grpoidinvlem1  30024  grpoidinvlem2  30025  grpoidinvlem4  30027  grporcan  30038  grpoinvid1  30048  grpoinvid2  30049  grpolcan  30050  grpoinvop  30053  grpomuldivass  30061  grponpcan  30063  ablo32  30069  ablo4  30070  vcm  30096  nvass  30142  hhssabloilem  30781  rngoaass  37085
  Copyright terms: Public domain W3C validator