MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoass Structured version   Visualization version   GIF version

Theorem grpoass 30532
Description: A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoass ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))

Proof of Theorem grpoass
Dummy variables 𝑥 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . 5 𝑋 = ran 𝐺
21isgrpo 30526 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
32ibi 267 . . 3 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
43simp2d 1142 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
5 oveq1 7438 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
65oveq1d 7446 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝑦)𝐺𝑧))
7 oveq1 7438 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝑦𝐺𝑧)))
86, 7eqeq12d 2751 . . 3 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧))))
9 oveq2 7439 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
109oveq1d 7446 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝑧))
11 oveq1 7438 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 7447 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝑧)))
1310, 12eqeq12d 2751 . . 3 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧))))
14 oveq2 7439 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝐶))
15 oveq2 7439 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1615oveq2d 7447 . . . 4 (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝐶)))
1714, 16eqeq12d 2751 . . 3 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
188, 13, 17rspc3v 3638 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
194, 18mpan9 506 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068   × cxp 5687  ran crn 5690  wf 6559  (class class class)co 7431  GrpOpcgr 30518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-ov 7434  df-grpo 30522
This theorem is referenced by:  grpoidinvlem1  30533  grpoidinvlem2  30534  grpoidinvlem4  30536  grporcan  30547  grpoinvid1  30557  grpoinvid2  30558  grpolcan  30559  grpoinvop  30562  grpomuldivass  30570  grponpcan  30572  ablo32  30578  ablo4  30579  vcm  30605  nvass  30651  hhssabloilem  31290  rngoaass  37901
  Copyright terms: Public domain W3C validator