MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoass Structured version   Visualization version   GIF version

Theorem grpoass 30024
Description: A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoass ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))

Proof of Theorem grpoass
Dummy variables 𝑥 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . 5 𝑋 = ran 𝐺
21isgrpo 30018 . . . 4 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
32ibi 267 . . 3 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
43simp2d 1142 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
5 oveq1 7419 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
65oveq1d 7427 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝑦)𝐺𝑧))
7 oveq1 7419 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝑦𝐺𝑧)))
86, 7eqeq12d 2747 . . 3 (𝑥 = 𝐴 → (((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧))))
9 oveq2 7420 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
109oveq1d 7427 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝑧))
11 oveq1 7419 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1211oveq2d 7428 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝑧)))
1310, 12eqeq12d 2747 . . 3 (𝑦 = 𝐵 → (((𝐴𝐺𝑦)𝐺𝑧) = (𝐴𝐺(𝑦𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧))))
14 oveq2 7420 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐺𝑧) = ((𝐴𝐺𝐵)𝐺𝐶))
15 oveq2 7420 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1615oveq2d 7428 . . . 4 (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐺𝑧)) = (𝐴𝐺(𝐵𝐺𝐶)))
1714, 16eqeq12d 2747 . . 3 (𝑧 = 𝐶 → (((𝐴𝐺𝐵)𝐺𝑧) = (𝐴𝐺(𝐵𝐺𝑧)) ↔ ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
188, 13, 17rspc3v 3627 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))))
194, 18mpan9 506 1 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069   × cxp 5674  ran crn 5677  wf 6539  (class class class)co 7412  GrpOpcgr 30010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-ov 7415  df-grpo 30014
This theorem is referenced by:  grpoidinvlem1  30025  grpoidinvlem2  30026  grpoidinvlem4  30028  grporcan  30039  grpoinvid1  30049  grpoinvid2  30050  grpolcan  30051  grpoinvop  30054  grpomuldivass  30062  grponpcan  30064  ablo32  30070  ablo4  30071  vcm  30097  nvass  30143  hhssabloilem  30782  rngoaass  37086
  Copyright terms: Public domain W3C validator