Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hmopex | Structured version Visualization version GIF version |
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopex | ⊢ HrmOp ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7362 | . 2 ⊢ ( ℋ ↑m ℋ) ∈ V | |
2 | hmopf 30437 | . . . 4 ⊢ (𝑡 ∈ HrmOp → 𝑡: ℋ⟶ ℋ) | |
3 | ax-hilex 29562 | . . . . 5 ⊢ ℋ ∈ V | |
4 | 3, 3 | elmap 8722 | . . . 4 ⊢ (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
5 | 2, 4 | sylibr 233 | . . 3 ⊢ (𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ)) |
6 | 5 | ssriv 3935 | . 2 ⊢ HrmOp ⊆ ( ℋ ↑m ℋ) |
7 | 1, 6 | ssexi 5263 | 1 ⊢ HrmOp ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ⟶wf 6469 (class class class)co 7329 ↑m cmap 8678 ℋchba 29482 HrmOpcho 29513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-hilex 29562 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-map 8680 df-hmop 30407 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |