HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopex Structured version   Visualization version   GIF version

Theorem hmopex 31561
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopex HrmOp ∈ V

Proof of Theorem hmopex
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ovex 7445 . 2 ( ℋ ↑m ℋ) ∈ V
2 hmopf 31560 . . . 4 (𝑡 ∈ HrmOp → 𝑡: ℋ⟶ ℋ)
3 ax-hilex 30685 . . . . 5 ℋ ∈ V
43, 3elmap 8871 . . . 4 (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ)
52, 4sylibr 233 . . 3 (𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ))
65ssriv 3986 . 2 HrmOp ⊆ ( ℋ ↑m ℋ)
71, 6ssexi 5322 1 HrmOp ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3473  wf 6539  (class class class)co 7412  m cmap 8826  chba 30605  HrmOpcho 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-hilex 30685
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-hmop 31530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator