HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopex Structured version   Visualization version   GIF version

Theorem hmopex 31837
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopex HrmOp ∈ V

Proof of Theorem hmopex
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ovex 7386 . 2 ( ℋ ↑m ℋ) ∈ V
2 hmopf 31836 . . . 4 (𝑡 ∈ HrmOp → 𝑡: ℋ⟶ ℋ)
3 ax-hilex 30961 . . . . 5 ℋ ∈ V
43, 3elmap 8805 . . . 4 (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ)
52, 4sylibr 234 . . 3 (𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ))
65ssriv 3941 . 2 HrmOp ⊆ ( ℋ ↑m ℋ)
71, 6ssexi 5264 1 HrmOp ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  wf 6482  (class class class)co 7353  m cmap 8760  chba 30881  HrmOpcho 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-hmop 31806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator