![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopex | Structured version Visualization version GIF version |
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopex | ⊢ HrmOp ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7471 | . 2 ⊢ ( ℋ ↑m ℋ) ∈ V | |
2 | hmopf 31919 | . . . 4 ⊢ (𝑡 ∈ HrmOp → 𝑡: ℋ⟶ ℋ) | |
3 | ax-hilex 31044 | . . . . 5 ⊢ ℋ ∈ V | |
4 | 3, 3 | elmap 8919 | . . . 4 ⊢ (𝑡 ∈ ( ℋ ↑m ℋ) ↔ 𝑡: ℋ⟶ ℋ) |
5 | 2, 4 | sylibr 234 | . . 3 ⊢ (𝑡 ∈ HrmOp → 𝑡 ∈ ( ℋ ↑m ℋ)) |
6 | 5 | ssriv 4002 | . 2 ⊢ HrmOp ⊆ ( ℋ ↑m ℋ) |
7 | 1, 6 | ssexi 5331 | 1 ⊢ HrmOp ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3481 ⟶wf 6565 (class class class)co 7438 ↑m cmap 8874 ℋchba 30964 HrmOpcho 30995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-hilex 31044 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-map 8876 df-hmop 31889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |