HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopf Structured version   Visualization version   GIF version

Theorem hmopf 31836
Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopf (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem hmopf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31835 . 2 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simplbi 497 1 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wf 6482  cfv 6486  (class class class)co 7353  chba 30881   ·ih csp 30884  HrmOpcho 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-hmop 31806
This theorem is referenced by:  hmopex  31837  hmopre  31885  hmopadj  31901  hmdmadj  31902  hmoplin  31904  eighmre  31925  eighmorth  31926  hmops  31982  hmopm  31983  hmopd  31984  hmopco  31985  leop2  32086  leoppos  32088  leoprf  32090  leopsq  32091  leopadd  32094  leopmuli  32095  leopmul  32096  leopmul2i  32097  leopnmid  32100  nmopleid  32101  opsqrlem1  32102  opsqrlem6  32107  elpjrn  32152
  Copyright terms: Public domain W3C validator