| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version | ||
| Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31848 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℋchba 30894 ·ih csp 30897 HrmOpcho 30925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-hmop 31819 |
| This theorem is referenced by: hmopex 31850 hmopre 31898 hmopadj 31914 hmdmadj 31915 hmoplin 31917 eighmre 31938 eighmorth 31939 hmops 31995 hmopm 31996 hmopd 31997 hmopco 31998 leop2 32099 leoppos 32101 leoprf 32103 leopsq 32104 leopadd 32107 leopmuli 32108 leopmul 32109 leopmul2i 32110 leopnmid 32113 nmopleid 32114 opsqrlem1 32115 opsqrlem6 32120 elpjrn 32165 |
| Copyright terms: Public domain | W3C validator |