HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopf Structured version   Visualization version   GIF version

Theorem hmopf 31671
Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopf (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem hmopf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31670 . 2 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simplbi 497 1 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3056  wf 6538  cfv 6542  (class class class)co 7414  chba 30716   ·ih csp 30719  HrmOpcho 30747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-hilex 30796
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-hmop 31641
This theorem is referenced by:  hmopex  31672  hmopre  31720  hmopadj  31736  hmdmadj  31737  hmoplin  31739  eighmre  31760  eighmorth  31761  hmops  31817  hmopm  31818  hmopd  31819  hmopco  31820  leop2  31921  leoppos  31923  leoprf  31925  leopsq  31926  leopadd  31929  leopmuli  31930  leopmul  31931  leopmul2i  31932  leopnmid  31935  nmopleid  31936  opsqrlem1  31937  opsqrlem6  31942  elpjrn  31987
  Copyright terms: Public domain W3C validator