| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version | ||
| Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31809 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 ·ih csp 30858 HrmOpcho 30886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-hmop 31780 |
| This theorem is referenced by: hmopex 31811 hmopre 31859 hmopadj 31875 hmdmadj 31876 hmoplin 31878 eighmre 31899 eighmorth 31900 hmops 31956 hmopm 31957 hmopd 31958 hmopco 31959 leop2 32060 leoppos 32062 leoprf 32064 leopsq 32065 leopadd 32068 leopmuli 32069 leopmul 32070 leopmul2i 32071 leopnmid 32074 nmopleid 32075 opsqrlem1 32076 opsqrlem6 32081 elpjrn 32126 |
| Copyright terms: Public domain | W3C validator |