HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopf Structured version   Visualization version   GIF version

Theorem hmopf 31849
Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopf (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)

Proof of Theorem hmopf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31848 . 2 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simplbi 497 1 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  chba 30894   ·ih csp 30897  HrmOpcho 30925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-hilex 30974
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-hmop 31819
This theorem is referenced by:  hmopex  31850  hmopre  31898  hmopadj  31914  hmdmadj  31915  hmoplin  31917  eighmre  31938  eighmorth  31939  hmops  31995  hmopm  31996  hmopd  31997  hmopco  31998  leop2  32099  leoppos  32101  leoprf  32103  leopsq  32104  leopadd  32107  leopmuli  32108  leopmul  32109  leopmul2i  32110  leopnmid  32113  nmopleid  32114  opsqrlem1  32115  opsqrlem6  32120  elpjrn  32165
  Copyright terms: Public domain W3C validator