| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version | ||
| Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31854 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℋchba 30900 ·ih csp 30903 HrmOpcho 30931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-hmop 31825 |
| This theorem is referenced by: hmopex 31856 hmopre 31904 hmopadj 31920 hmdmadj 31921 hmoplin 31923 eighmre 31944 eighmorth 31945 hmops 32001 hmopm 32002 hmopd 32003 hmopco 32004 leop2 32105 leoppos 32107 leoprf 32109 leopsq 32110 leopadd 32113 leopmuli 32114 leopmul 32115 leopmul2i 32116 leopnmid 32119 nmopleid 32120 opsqrlem1 32121 opsqrlem6 32126 elpjrn 32171 |
| Copyright terms: Public domain | W3C validator |