| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version | ||
| Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31855 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℋchba 30901 ·ih csp 30904 HrmOpcho 30932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-hilex 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-hmop 31826 |
| This theorem is referenced by: hmopex 31857 hmopre 31905 hmopadj 31921 hmdmadj 31922 hmoplin 31924 eighmre 31945 eighmorth 31946 hmops 32002 hmopm 32003 hmopd 32004 hmopco 32005 leop2 32106 leoppos 32108 leoprf 32110 leopsq 32111 leopadd 32114 leopmuli 32115 leopmul 32116 leopmul2i 32117 leopnmid 32120 nmopleid 32121 opsqrlem1 32122 opsqrlem6 32127 elpjrn 32172 |
| Copyright terms: Public domain | W3C validator |