![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopf | Structured version Visualization version GIF version |
Description: A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopf | ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elhmop 31905 | . 2 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℋchba 30951 ·ih csp 30954 HrmOpcho 30982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-hmop 31876 |
This theorem is referenced by: hmopex 31907 hmopre 31955 hmopadj 31971 hmdmadj 31972 hmoplin 31974 eighmre 31995 eighmorth 31996 hmops 32052 hmopm 32053 hmopd 32054 hmopco 32055 leop2 32156 leoppos 32158 leoprf 32160 leopsq 32161 leopadd 32164 leopmuli 32165 leopmul 32166 leopmul2i 32167 leopnmid 32170 nmopleid 32171 opsqrlem1 32172 opsqrlem6 32177 elpjrn 32222 |
Copyright terms: Public domain | W3C validator |