Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiooinf Structured version   Visualization version   GIF version

Theorem ressiooinf 40674
Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiooinf.a (𝜑𝐴 ⊆ ℝ)
ressiooinf.s 𝑆 = inf(𝐴, ℝ*, < )
ressiooinf.n (𝜑 → ¬ 𝑆𝐴)
ressiooinf.i 𝐼 = (𝑆(,)+∞)
Assertion
Ref Expression
ressiooinf (𝜑𝐴𝐼)

Proof of Theorem ressiooinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressiooinf.s . . . . . 6 𝑆 = inf(𝐴, ℝ*, < )
2 ressiooinf.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
3 ressxr 10420 . . . . . . . . . 10 ℝ ⊆ ℝ*
43a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3830 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
65adantr 474 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
76infxrcld 40500 . . . . . 6 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
81, 7syl5eqel 2862 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
9 pnfxr 10430 . . . . . 6 +∞ ∈ ℝ*
109a1i 11 . . . . 5 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
112adantr 474 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 479 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3821 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
145sselda 3820 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
15 infxrlb 12476 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
166, 12, 15syl2anc 579 . . . . . . 7 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
171, 16syl5eqbr 4921 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
18 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝑆𝑥 = 𝑆)
1918eqcomd 2783 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑆 = 𝑥)
2019adantl 475 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
21 simpl 476 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2220, 21eqeltrd 2858 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2322adantll 704 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
24 ressiooinf.n . . . . . . . . . 10 (𝜑 → ¬ 𝑆𝐴)
2524ad2antrr 716 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2623, 25pm2.65da 807 . . . . . . . 8 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
2726neqned 2975 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝑆)
2827necomd 3023 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
298, 14, 17, 28xrleneltd 40429 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 < 𝑥)
3013ltpnfd 12266 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < +∞)
318, 10, 13, 29, 30eliood 40614 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝑆(,)+∞))
32 ressiooinf.i . . . 4 𝐼 = (𝑆(,)+∞)
3331, 32syl6eleqr 2869 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3433ralrimiva 3147 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
35 dfss3 3809 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3634, 35sylibr 226 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2106  wral 3089  wss 3791   class class class wbr 4886  (class class class)co 6922  infcinf 8635  cr 10271  +∞cpnf 10408  *cxr 10410   < clt 10411  cle 10412  (,)cioo 12487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-ioo 12491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator