| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressiooinf | Structured version Visualization version GIF version | ||
| Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ressiooinf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ressiooinf.s | ⊢ 𝑆 = inf(𝐴, ℝ*, < ) |
| ressiooinf.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
| ressiooinf.i | ⊢ 𝐼 = (𝑆(,)+∞) |
| Ref | Expression |
|---|---|
| ressiooinf | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressiooinf.s | . . . . . 6 ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | |
| 2 | ressiooinf.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | ressxr 11163 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
| 5 | 2, 4 | sstrd 3941 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
| 7 | 6 | infxrcld 45512 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
| 8 | 1, 7 | eqeltrid 2837 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
| 9 | pnfxr 11173 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 11 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 13 | 11, 12 | sseldd 3931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 14 | 5 | sselda 3930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 15 | infxrlb 13236 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
| 16 | 6, 12, 15 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
| 17 | 1, 16 | eqbrtrid 5128 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≤ 𝑥) |
| 18 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
| 19 | 18 | eqcomd 2739 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
| 20 | 19 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
| 21 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
| 22 | 20, 21 | eqeltrd 2833 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
| 23 | 22 | adantll 714 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
| 24 | ressiooinf.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
| 26 | 23, 25 | pm2.65da 816 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
| 27 | 26 | neqned 2936 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
| 28 | 27 | necomd 2984 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≠ 𝑥) |
| 29 | 8, 14, 17, 28 | xrleneltd 45447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 < 𝑥) |
| 30 | 13 | ltpnfd 13022 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < +∞) |
| 31 | 8, 10, 13, 29, 30 | eliood 45623 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑆(,)+∞)) |
| 32 | ressiooinf.i | . . . 4 ⊢ 𝐼 = (𝑆(,)+∞) | |
| 33 | 31, 32 | eleqtrrdi 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
| 34 | 33 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
| 35 | dfss3 3919 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
| 36 | 34, 35 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 class class class wbr 5093 (class class class)co 7352 infcinf 9332 ℝcr 11012 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 (,)cioo 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-ioo 13251 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |