| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressiooinf | Structured version Visualization version GIF version | ||
| Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ressiooinf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| ressiooinf.s | ⊢ 𝑆 = inf(𝐴, ℝ*, < ) |
| ressiooinf.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
| ressiooinf.i | ⊢ 𝐼 = (𝑆(,)+∞) |
| Ref | Expression |
|---|---|
| ressiooinf | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressiooinf.s | . . . . . 6 ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | |
| 2 | ressiooinf.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | ressxr 11284 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
| 5 | 2, 4 | sstrd 3974 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
| 7 | 6 | infxrcld 45383 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
| 8 | 1, 7 | eqeltrid 2839 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
| 9 | pnfxr 11294 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 11 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 13 | 11, 12 | sseldd 3964 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 14 | 5 | sselda 3963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 15 | infxrlb 13356 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
| 16 | 6, 12, 15 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
| 17 | 1, 16 | eqbrtrid 5159 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≤ 𝑥) |
| 18 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
| 19 | 18 | eqcomd 2742 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
| 20 | 19 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
| 21 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
| 22 | 20, 21 | eqeltrd 2835 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
| 23 | 22 | adantll 714 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
| 24 | ressiooinf.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
| 26 | 23, 25 | pm2.65da 816 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
| 27 | 26 | neqned 2940 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
| 28 | 27 | necomd 2988 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≠ 𝑥) |
| 29 | 8, 14, 17, 28 | xrleneltd 45317 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 < 𝑥) |
| 30 | 13 | ltpnfd 13142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < +∞) |
| 31 | 8, 10, 13, 29, 30 | eliood 45494 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑆(,)+∞)) |
| 32 | ressiooinf.i | . . . 4 ⊢ 𝐼 = (𝑆(,)+∞) | |
| 33 | 31, 32 | eleqtrrdi 2846 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
| 34 | 33 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
| 35 | dfss3 3952 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
| 36 | 34, 35 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 class class class wbr 5124 (class class class)co 7410 infcinf 9458 ℝcr 11133 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 (,)cioo 13367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-ioo 13371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |