![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressiooinf | Structured version Visualization version GIF version |
Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ressiooinf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ressiooinf.s | ⊢ 𝑆 = inf(𝐴, ℝ*, < ) |
ressiooinf.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
ressiooinf.i | ⊢ 𝐼 = (𝑆(,)+∞) |
Ref | Expression |
---|---|
ressiooinf | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressiooinf.s | . . . . . 6 ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | |
2 | ressiooinf.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | ressxr 11200 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 3955 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
6 | 5 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
7 | 6 | infxrcld 43631 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
8 | 1, 7 | eqeltrid 2842 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
9 | pnfxr 11210 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
11 | 2 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
12 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sseldd 3946 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 5 | sselda 3945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
15 | infxrlb 13254 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
16 | 6, 12, 15 | syl2anc 585 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
17 | 1, 16 | eqbrtrid 5141 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≤ 𝑥) |
18 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
19 | 18 | eqcomd 2743 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
20 | 19 | adantl 483 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
21 | simpl 484 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
22 | 20, 21 | eqeltrd 2838 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
23 | 22 | adantll 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
24 | ressiooinf.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
25 | 24 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
26 | 23, 25 | pm2.65da 816 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
27 | 26 | neqned 2951 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
28 | 27 | necomd 3000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≠ 𝑥) |
29 | 8, 14, 17, 28 | xrleneltd 43564 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 < 𝑥) |
30 | 13 | ltpnfd 13043 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < +∞) |
31 | 8, 10, 13, 29, 30 | eliood 43743 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑆(,)+∞)) |
32 | ressiooinf.i | . . . 4 ⊢ 𝐼 = (𝑆(,)+∞) | |
33 | 31, 32 | eleqtrrdi 2849 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
34 | 33 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
35 | dfss3 3933 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
36 | 34, 35 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ⊆ wss 3911 class class class wbr 5106 (class class class)co 7358 infcinf 9378 ℝcr 11051 +∞cpnf 11187 ℝ*cxr 11189 < clt 11190 ≤ cle 11191 (,)cioo 13265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-sup 9379 df-inf 9380 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-ioo 13269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |