Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiooinf Structured version   Visualization version   GIF version

Theorem ressiooinf 44942
Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiooinf.a (𝜑𝐴 ⊆ ℝ)
ressiooinf.s 𝑆 = inf(𝐴, ℝ*, < )
ressiooinf.n (𝜑 → ¬ 𝑆𝐴)
ressiooinf.i 𝐼 = (𝑆(,)+∞)
Assertion
Ref Expression
ressiooinf (𝜑𝐴𝐼)

Proof of Theorem ressiooinf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ressiooinf.s . . . . . 6 𝑆 = inf(𝐴, ℝ*, < )
2 ressiooinf.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
3 ressxr 11289 . . . . . . . . . 10 ℝ ⊆ ℝ*
43a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
52, 4sstrd 3990 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
65adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
76infxrcld 44771 . . . . . 6 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
81, 7eqeltrid 2833 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
9 pnfxr 11299 . . . . . 6 +∞ ∈ ℝ*
109a1i 11 . . . . 5 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
112adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3981 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
145sselda 3980 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
15 infxrlb 13346 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
166, 12, 15syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
171, 16eqbrtrid 5183 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
18 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝑆𝑥 = 𝑆)
1918eqcomd 2734 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑆 = 𝑥)
2019adantl 481 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
21 simpl 482 . . . . . . . . . . 11 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2220, 21eqeltrd 2829 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2322adantll 713 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
24 ressiooinf.n . . . . . . . . . 10 (𝜑 → ¬ 𝑆𝐴)
2524ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2623, 25pm2.65da 816 . . . . . . . 8 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
2726neqned 2944 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝑆)
2827necomd 2993 . . . . . 6 ((𝜑𝑥𝐴) → 𝑆𝑥)
298, 14, 17, 28xrleneltd 44705 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 < 𝑥)
3013ltpnfd 13134 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < +∞)
318, 10, 13, 29, 30eliood 44883 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝑆(,)+∞))
32 ressiooinf.i . . . 4 𝐼 = (𝑆(,)+∞)
3331, 32eleqtrrdi 2840 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3433ralrimiva 3143 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
35 dfss3 3968 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3634, 35sylibr 233 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  wss 3947   class class class wbr 5148  (class class class)co 7420  infcinf 9465  cr 11138  +∞cpnf 11276  *cxr 11278   < clt 11279  cle 11280  (,)cioo 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-ioo 13361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator