|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressiooinf | Structured version Visualization version GIF version | ||
| Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| ressiooinf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| ressiooinf.s | ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | 
| ressiooinf.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | 
| ressiooinf.i | ⊢ 𝐼 = (𝑆(,)+∞) | 
| Ref | Expression | 
|---|---|
| ressiooinf | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ressiooinf.s | . . . . . 6 ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | |
| 2 | ressiooinf.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | ressxr 11305 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 4 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) | 
| 5 | 2, 4 | sstrd 3994 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | 
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) | 
| 7 | 6 | infxrcld 45400 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) | 
| 8 | 1, 7 | eqeltrid 2845 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) | 
| 9 | pnfxr 11315 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) | 
| 11 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) | 
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 13 | 11, 12 | sseldd 3984 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | 
| 14 | 5 | sselda 3983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) | 
| 15 | infxrlb 13376 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
| 16 | 6, 12, 15 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | 
| 17 | 1, 16 | eqbrtrid 5178 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≤ 𝑥) | 
| 18 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
| 19 | 18 | eqcomd 2743 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) | 
| 20 | 19 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) | 
| 21 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
| 22 | 20, 21 | eqeltrd 2841 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) | 
| 23 | 22 | adantll 714 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) | 
| 24 | ressiooinf.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
| 25 | 24 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) | 
| 26 | 23, 25 | pm2.65da 817 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) | 
| 27 | 26 | neqned 2947 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) | 
| 28 | 27 | necomd 2996 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≠ 𝑥) | 
| 29 | 8, 14, 17, 28 | xrleneltd 45334 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 < 𝑥) | 
| 30 | 13 | ltpnfd 13163 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < +∞) | 
| 31 | 8, 10, 13, 29, 30 | eliood 45511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑆(,)+∞)) | 
| 32 | ressiooinf.i | . . . 4 ⊢ 𝐼 = (𝑆(,)+∞) | |
| 33 | 31, 32 | eleqtrrdi 2852 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) | 
| 34 | 33 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | 
| 35 | dfss3 3972 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
| 36 | 34, 35 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 class class class wbr 5143 (class class class)co 7431 infcinf 9481 ℝcr 11154 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 (,)cioo 13387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-ioo 13391 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |