![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressiooinf | Structured version Visualization version GIF version |
Description: If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ressiooinf.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
ressiooinf.s | ⊢ 𝑆 = inf(𝐴, ℝ*, < ) |
ressiooinf.n | ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) |
ressiooinf.i | ⊢ 𝐼 = (𝑆(,)+∞) |
Ref | Expression |
---|---|
ressiooinf | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressiooinf.s | . . . . . 6 ⊢ 𝑆 = inf(𝐴, ℝ*, < ) | |
2 | ressiooinf.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | ressxr 11334 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
4 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ℝ ⊆ ℝ*) |
5 | 2, 4 | sstrd 4019 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
7 | 6 | infxrcld 45304 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
8 | 1, 7 | eqeltrid 2848 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ ℝ*) |
9 | pnfxr 11344 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
11 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
13 | 11, 12 | sseldd 4009 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
14 | 5 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
15 | infxrlb 13396 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) | |
16 | 6, 12, 15 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
17 | 1, 16 | eqbrtrid 5201 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≤ 𝑥) |
18 | id 22 | . . . . . . . . . . . . 13 ⊢ (𝑥 = 𝑆 → 𝑥 = 𝑆) | |
19 | 18 | eqcomd 2746 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑆 → 𝑆 = 𝑥) |
20 | 19 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 = 𝑥) |
21 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑥 ∈ 𝐴) | |
22 | 20, 21 | eqeltrd 2844 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
23 | 22 | adantll 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → 𝑆 ∈ 𝐴) |
24 | ressiooinf.n | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑆 ∈ 𝐴) | |
25 | 24 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆 ∈ 𝐴) |
26 | 23, 25 | pm2.65da 816 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝑆) |
27 | 26 | neqned 2953 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑆) |
28 | 27 | necomd 3002 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ≠ 𝑥) |
29 | 8, 14, 17, 28 | xrleneltd 45238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 < 𝑥) |
30 | 13 | ltpnfd 13184 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 < +∞) |
31 | 8, 10, 13, 29, 30 | eliood 45416 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑆(,)+∞)) |
32 | ressiooinf.i | . . . 4 ⊢ 𝐼 = (𝑆(,)+∞) | |
33 | 31, 32 | eleqtrrdi 2855 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐼) |
34 | 33 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) |
35 | dfss3 3997 | . 2 ⊢ (𝐴 ⊆ 𝐼 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐼) | |
36 | 34, 35 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 infcinf 9510 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 (,)cioo 13407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-ioo 13411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |