![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icogelb | Structured version Visualization version GIF version |
Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
icogelb | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elico1 12597 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp2 1117 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 ≤ 𝐶) | |
3 | 1, 2 | syl6bi 245 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) → 𝐴 ≤ 𝐶)) |
4 | 3 | 3impia 1097 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2050 class class class wbr 4929 (class class class)co 6976 ℝ*cxr 10473 < clt 10474 ≤ cle 10475 [,)cico 12556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-iota 6152 df-fun 6190 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-xr 10478 df-ico 12560 |
This theorem is referenced by: fprodge0 15207 fprodge1 15209 hgt750lemf 31569 xralrple2 41049 icoopn 41230 icogelbd 41263 fsumge0cl 41283 limcresioolb 41353 fourierdlem41 41862 fourierdlem43 41864 fourierdlem46 41866 fourierdlem48 41868 fouriersw 41945 sge0isum 42138 sge0ad2en 42142 sge0uzfsumgt 42155 sge0seq 42157 sge0reuz 42158 hoidmv1lelem2 42303 hoidmvlelem1 42306 hoidmvlelem2 42307 ovnhoilem1 42312 hspdifhsp 42327 hspmbllem2 42338 iinhoiicclem 42384 |
Copyright terms: Public domain | W3C validator |