MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icogelb Structured version   Visualization version   GIF version

Theorem icogelb 13291
Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icogelb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)

Proof of Theorem icogelb
StepHypRef Expression
1 elico1 13283 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
2 simp2 1137 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → 𝐴𝐶)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111   class class class wbr 5086  (class class class)co 7341  *cxr 11140   < clt 11141  cle 11142  [,)cico 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-xr 11145  df-ico 13246
This theorem is referenced by:  icogelbd  13292  fprodge0  15895  fprodge1  15897  hgt750lemf  34658  xralrple2  45393  icoopn  45565  fsumge0cl  45613  limcresioolb  45681  fourierdlem41  46186  fourierdlem43  46188  fourierdlem46  46190  fourierdlem48  46192  fouriersw  46269  sge0isum  46465  sge0ad2en  46469  sge0uzfsumgt  46482  sge0seq  46484  sge0reuz  46485  hoidmv1lelem2  46630  hoidmvlelem1  46633  hoidmvlelem2  46634  ovnhoilem1  46639  hspdifhsp  46654  hspmbllem2  46665  iinhoiicclem  46711
  Copyright terms: Public domain W3C validator