MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icogelb Structured version   Visualization version   GIF version

Theorem icogelb 13317
Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icogelb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)

Proof of Theorem icogelb
StepHypRef Expression
1 elico1 13309 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
2 simp2 1137 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → 𝐴𝐶)
31, 2biimtrdi 253 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶))
433impia 1117 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5095  (class class class)co 7353  *cxr 11167   < clt 11168  cle 11169  [,)cico 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-xr 11172  df-ico 13272
This theorem is referenced by:  icogelbd  13318  fprodge0  15918  fprodge1  15920  hgt750lemf  34623  xralrple2  45337  icoopn  45510  fsumge0cl  45558  limcresioolb  45628  fourierdlem41  46133  fourierdlem43  46135  fourierdlem46  46137  fourierdlem48  46139  fouriersw  46216  sge0isum  46412  sge0ad2en  46416  sge0uzfsumgt  46429  sge0seq  46431  sge0reuz  46432  hoidmv1lelem2  46577  hoidmvlelem1  46580  hoidmvlelem2  46581  ovnhoilem1  46586  hspdifhsp  46601  hspmbllem2  46612  iinhoiicclem  46658
  Copyright terms: Public domain W3C validator