MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icogelb Structured version   Visualization version   GIF version

Theorem icogelb 13112
Description: An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icogelb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)

Proof of Theorem icogelb
StepHypRef Expression
1 elico1 13104 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
2 simp2 1135 . . 3 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → 𝐴𝐶)
31, 2syl6bi 252 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶))
433impia 1115 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109   class class class wbr 5078  (class class class)co 7268  *cxr 10992   < clt 10993  cle 10994  [,)cico 13063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-xr 10997  df-ico 13067
This theorem is referenced by:  fprodge0  15684  fprodge1  15686  hgt750lemf  32612  xralrple2  42847  icoopn  43017  icogelbd  43050  fsumge0cl  43068  limcresioolb  43138  fourierdlem41  43643  fourierdlem43  43645  fourierdlem46  43647  fourierdlem48  43649  fouriersw  43726  sge0isum  43919  sge0ad2en  43923  sge0uzfsumgt  43936  sge0seq  43938  sge0reuz  43939  hoidmv1lelem2  44084  hoidmvlelem1  44087  hoidmvlelem2  44088  ovnhoilem1  44093  hspdifhsp  44108  hspmbllem2  44119  iinhoiicclem  44165
  Copyright terms: Public domain W3C validator