Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initoo2 Structured version   Visualization version   GIF version

Theorem initoo2 49203
Description: An initial object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypothesis
Ref Expression
initoo2.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
initoo2 (𝑂 ∈ (InitO‘𝐶) → 𝑂𝐵)

Proof of Theorem initoo2
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoo2.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 initorcl 17958 . . . 4 (𝑂 ∈ (InitO‘𝐶) → 𝐶 ∈ Cat)
41, 2, 3isinitoi 17967 . . 3 ((𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂(Hom ‘𝐶)𝑏)))
54anidms 566 . 2 (𝑂 ∈ (InitO‘𝐶) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂(Hom ‘𝐶)𝑏)))
65simpld 494 1 (𝑂 ∈ (InitO‘𝐶) → 𝑂𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  wral 3045  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  InitOcinito 17949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-inito 17952
This theorem is referenced by:  oppctermo  49207  isinito2  49468
  Copyright terms: Public domain W3C validator