Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natoppfb Structured version   Visualization version   GIF version

Theorem natoppfb 49193
Description: A natural transformation is natural between opposite functors, and vice versa. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
natoppf.o 𝑂 = (oppCat‘𝐶)
natoppf.p 𝑃 = (oppCat‘𝐷)
natoppf.n 𝑁 = (𝐶 Nat 𝐷)
natoppf.m 𝑀 = (𝑂 Nat 𝑃)
natoppfb.k (𝜑𝐾 = ( oppFunc ‘𝐹))
natoppfb.l (𝜑𝐿 = ( oppFunc ‘𝐺))
natoppfb.c (𝜑𝐶𝑉)
natoppfb.d (𝜑𝐷𝑊)
Assertion
Ref Expression
natoppfb (𝜑 → (𝐹𝑁𝐺) = (𝐿𝑀𝐾))

Proof of Theorem natoppfb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 natoppf.o . . . 4 𝑂 = (oppCat‘𝐶)
2 natoppf.p . . . 4 𝑃 = (oppCat‘𝐷)
3 natoppf.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 natoppf.m . . . 4 𝑀 = (𝑂 Nat 𝑃)
5 natoppfb.k . . . . 5 (𝜑𝐾 = ( oppFunc ‘𝐹))
65adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝐾 = ( oppFunc ‘𝐹))
7 natoppfb.l . . . . 5 (𝜑𝐿 = ( oppFunc ‘𝐺))
87adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝐿 = ( oppFunc ‘𝐺))
9 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐹𝑁𝐺))
101, 2, 3, 4, 6, 8, 9natoppf2 49192 . . 3 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐿𝑀𝐾))
11 eqid 2729 . . . . 5 (oppCat‘𝑂) = (oppCat‘𝑂)
12 eqid 2729 . . . . 5 (oppCat‘𝑃) = (oppCat‘𝑃)
13 eqid 2729 . . . . 5 ((oppCat‘𝑂) Nat (oppCat‘𝑃)) = ((oppCat‘𝑂) Nat (oppCat‘𝑃))
147adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 = ( oppFunc ‘𝐺))
1514fveq2d 6844 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐿) = ( oppFunc ‘( oppFunc ‘𝐺)))
164natrcl 17891 . . . . . . . . . 10 (𝑥 ∈ (𝐿𝑀𝐾) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃)))
1716adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃)))
1817simpld 494 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 ∈ (𝑂 Func 𝑃))
1914, 18eqeltrrd 2829 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐺) ∈ (𝑂 Func 𝑃))
20 relfunc 17800 . . . . . . 7 Rel (𝑂 Func 𝑃)
21 eqid 2729 . . . . . . 7 ( oppFunc ‘𝐺) = ( oppFunc ‘𝐺)
2219, 20, 212oppf 49094 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘( oppFunc ‘𝐺)) = 𝐺)
2315, 22eqtr2d 2765 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐺 = ( oppFunc ‘𝐿))
245adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 = ( oppFunc ‘𝐹))
2524fveq2d 6844 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐾) = ( oppFunc ‘( oppFunc ‘𝐹)))
2617simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 ∈ (𝑂 Func 𝑃))
2724, 26eqeltrrd 2829 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
28 eqid 2729 . . . . . . 7 ( oppFunc ‘𝐹) = ( oppFunc ‘𝐹)
2927, 20, 282oppf 49094 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘( oppFunc ‘𝐹)) = 𝐹)
3025, 29eqtr2d 2765 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 = ( oppFunc ‘𝐾))
31 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐿𝑀𝐾))
3211, 12, 4, 13, 23, 30, 31natoppf2 49192 . . . 4 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺))
3312oppchomf 17661 . . . . . . . 8 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
3433a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
3512oppccomf 17662 . . . . . . . 8 (compf𝐶) = (compf‘(oppCat‘𝑂))
3635a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (compf𝐶) = (compf‘(oppCat‘𝑂)))
3722oppchomf 17661 . . . . . . . 8 (Homf𝐷) = (Homf ‘(oppCat‘𝑃))
3837a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (Homf𝐷) = (Homf ‘(oppCat‘𝑃)))
3922oppccomf 17662 . . . . . . . 8 (compf𝐷) = (compf‘(oppCat‘𝑃))
4039a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (compf𝐷) = (compf‘(oppCat‘𝑃)))
41 natoppfb.c . . . . . . . . . . 11 (𝜑𝐶𝑉)
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶𝑉)
43 natoppfb.d . . . . . . . . . . 11 (𝜑𝐷𝑊)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷𝑊)
451, 2, 42, 44, 27funcoppc5 49107 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 ∈ (𝐶 Func 𝐷))
4645func1st2nd 49038 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
4746funcrcl2 49041 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶 ∈ Cat)
481oppccat 17659 . . . . . . . 8 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4911oppccat 17659 . . . . . . . 8 (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat)
5047, 48, 493syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑂) ∈ Cat)
5146funcrcl3 49042 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷 ∈ Cat)
522oppccat 17659 . . . . . . . 8 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
5312oppccat 17659 . . . . . . . 8 (𝑃 ∈ Cat → (oppCat‘𝑃) ∈ Cat)
5451, 52, 533syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑃) ∈ Cat)
5534, 36, 38, 40, 47, 50, 51, 54natpropd 17917 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐶 Nat 𝐷) = ((oppCat‘𝑂) Nat (oppCat‘𝑃)))
563, 55eqtrid 2776 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑁 = ((oppCat‘𝑂) Nat (oppCat‘𝑃)))
5756oveqd 7386 . . . 4 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐹𝑁𝐺) = (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺))
5832, 57eleqtrrd 2831 . . 3 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹𝑁𝐺))
5910, 58impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐹𝑁𝐺) ↔ 𝑥 ∈ (𝐿𝑀𝐾)))
6059eqrdv 2727 1 (𝜑 → (𝐹𝑁𝐺) = (𝐿𝑀𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Catccat 17601  Homf chomf 17603  compfccomf 17604  oppCatcoppc 17648   Func cfunc 17792   Nat cnat 17882   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-oppc 17649  df-func 17796  df-nat 17884  df-oppf 49085
This theorem is referenced by:  fucoppclem  49369  lmddu  49629
  Copyright terms: Public domain W3C validator