| Step | Hyp | Ref
| Expression |
| 1 | | natoppf.o |
. . . 4
⊢ 𝑂 = (oppCat‘𝐶) |
| 2 | | natoppf.p |
. . . 4
⊢ 𝑃 = (oppCat‘𝐷) |
| 3 | | natoppf.n |
. . . 4
⊢ 𝑁 = (𝐶 Nat 𝐷) |
| 4 | | natoppf.m |
. . . 4
⊢ 𝑀 = (𝑂 Nat 𝑃) |
| 5 | | natoppfb.k |
. . . . 5
⊢ (𝜑 → 𝐾 = (oppFunc‘𝐹)) |
| 6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹𝑁𝐺)) → 𝐾 = (oppFunc‘𝐹)) |
| 7 | | natoppfb.l |
. . . . 5
⊢ (𝜑 → 𝐿 = (oppFunc‘𝐺)) |
| 8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹𝑁𝐺)) → 𝐿 = (oppFunc‘𝐺)) |
| 9 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐹𝑁𝐺)) |
| 10 | 1, 2, 3, 4, 6, 8, 9 | natoppf2 49201 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐿𝑀𝐾)) |
| 11 | | eqid 2730 |
. . . . 5
⊢
(oppCat‘𝑂) =
(oppCat‘𝑂) |
| 12 | | eqid 2730 |
. . . . 5
⊢
(oppCat‘𝑃) =
(oppCat‘𝑃) |
| 13 | | eqid 2730 |
. . . . 5
⊢
((oppCat‘𝑂)
Nat (oppCat‘𝑃)) =
((oppCat‘𝑂) Nat
(oppCat‘𝑃)) |
| 14 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 = (oppFunc‘𝐺)) |
| 15 | 14 | fveq2d 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppFunc‘𝐿) = (oppFunc‘(oppFunc‘𝐺))) |
| 16 | 4 | natrcl 17921 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐿𝑀𝐾) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃))) |
| 17 | 16 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃))) |
| 18 | 17 | simpld 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 ∈ (𝑂 Func 𝑃)) |
| 19 | 14, 18 | eqeltrrd 2830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppFunc‘𝐺) ∈ (𝑂 Func 𝑃)) |
| 20 | | relfunc 17830 |
. . . . . . 7
⊢ Rel
(𝑂 Func 𝑃) |
| 21 | | eqid 2730 |
. . . . . . 7
⊢
(oppFunc‘𝐺) =
(oppFunc‘𝐺) |
| 22 | 19, 20, 21 | 2oppf 49109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) →
(oppFunc‘(oppFunc‘𝐺)) = 𝐺) |
| 23 | 15, 22 | eqtr2d 2766 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐺 = (oppFunc‘𝐿)) |
| 24 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 = (oppFunc‘𝐹)) |
| 25 | 24 | fveq2d 6864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppFunc‘𝐾) = (oppFunc‘(oppFunc‘𝐹))) |
| 26 | 17 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 ∈ (𝑂 Func 𝑃)) |
| 27 | 24, 26 | eqeltrrd 2830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppFunc‘𝐹) ∈ (𝑂 Func 𝑃)) |
| 28 | | eqid 2730 |
. . . . . . 7
⊢
(oppFunc‘𝐹) =
(oppFunc‘𝐹) |
| 29 | 27, 20, 28 | 2oppf 49109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) →
(oppFunc‘(oppFunc‘𝐹)) = 𝐹) |
| 30 | 25, 29 | eqtr2d 2766 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 = (oppFunc‘𝐾)) |
| 31 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐿𝑀𝐾)) |
| 32 | 11, 12, 4, 13, 23, 30, 31 | natoppf2 49201 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺)) |
| 33 | 1 | 2oppchomf 17691 |
. . . . . . . 8
⊢
(Homf ‘𝐶) = (Homf
‘(oppCat‘𝑂)) |
| 34 | 33 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (Homf
‘𝐶) =
(Homf ‘(oppCat‘𝑂))) |
| 35 | 1 | 2oppccomf 17692 |
. . . . . . . 8
⊢
(compf‘𝐶) =
(compf‘(oppCat‘𝑂)) |
| 36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) →
(compf‘𝐶) =
(compf‘(oppCat‘𝑂))) |
| 37 | 2 | 2oppchomf 17691 |
. . . . . . . 8
⊢
(Homf ‘𝐷) = (Homf
‘(oppCat‘𝑃)) |
| 38 | 37 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (Homf
‘𝐷) =
(Homf ‘(oppCat‘𝑃))) |
| 39 | 2 | 2oppccomf 17692 |
. . . . . . . 8
⊢
(compf‘𝐷) =
(compf‘(oppCat‘𝑃)) |
| 40 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) →
(compf‘𝐷) =
(compf‘(oppCat‘𝑃))) |
| 41 | | natoppfb.c |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶 ∈ 𝑉) |
| 43 | | natoppfb.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷 ∈ 𝑊) |
| 45 | 1, 2, 42, 44, 27 | funcoppc5 49122 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 46 | 45 | func1st2nd 49053 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 47 | 46 | funcrcl2 49056 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶 ∈ Cat) |
| 48 | 1 | oppccat 17689 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 49 | 11 | oppccat 17689 |
. . . . . . . 8
⊢ (𝑂 ∈ Cat →
(oppCat‘𝑂) ∈
Cat) |
| 50 | 47, 48, 49 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑂) ∈ Cat) |
| 51 | 46 | funcrcl3 49057 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷 ∈ Cat) |
| 52 | 2 | oppccat 17689 |
. . . . . . . 8
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 53 | 12 | oppccat 17689 |
. . . . . . . 8
⊢ (𝑃 ∈ Cat →
(oppCat‘𝑃) ∈
Cat) |
| 54 | 51, 52, 53 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑃) ∈ Cat) |
| 55 | 34, 36, 38, 40, 47, 50, 51, 54 | natpropd 17947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (𝐶 Nat 𝐷) = ((oppCat‘𝑂) Nat (oppCat‘𝑃))) |
| 56 | 3, 55 | eqtrid 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝑁 = ((oppCat‘𝑂) Nat (oppCat‘𝑃))) |
| 57 | 56 | oveqd 7406 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → (𝐹𝑁𝐺) = (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺)) |
| 58 | 32, 57 | eleqtrrd 2832 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹𝑁𝐺)) |
| 59 | 10, 58 | impbida 800 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹𝑁𝐺) ↔ 𝑥 ∈ (𝐿𝑀𝐾))) |
| 60 | 59 | eqrdv 2728 |
1
⊢ (𝜑 → (𝐹𝑁𝐺) = (𝐿𝑀𝐾)) |