Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natoppfb Structured version   Visualization version   GIF version

Theorem natoppfb 49236
Description: A natural transformation is natural between opposite functors, and vice versa. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
natoppf.o 𝑂 = (oppCat‘𝐶)
natoppf.p 𝑃 = (oppCat‘𝐷)
natoppf.n 𝑁 = (𝐶 Nat 𝐷)
natoppf.m 𝑀 = (𝑂 Nat 𝑃)
natoppfb.k (𝜑𝐾 = ( oppFunc ‘𝐹))
natoppfb.l (𝜑𝐿 = ( oppFunc ‘𝐺))
natoppfb.c (𝜑𝐶𝑉)
natoppfb.d (𝜑𝐷𝑊)
Assertion
Ref Expression
natoppfb (𝜑 → (𝐹𝑁𝐺) = (𝐿𝑀𝐾))

Proof of Theorem natoppfb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 natoppf.o . . . 4 𝑂 = (oppCat‘𝐶)
2 natoppf.p . . . 4 𝑃 = (oppCat‘𝐷)
3 natoppf.n . . . 4 𝑁 = (𝐶 Nat 𝐷)
4 natoppf.m . . . 4 𝑀 = (𝑂 Nat 𝑃)
5 natoppfb.k . . . . 5 (𝜑𝐾 = ( oppFunc ‘𝐹))
65adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝐾 = ( oppFunc ‘𝐹))
7 natoppfb.l . . . . 5 (𝜑𝐿 = ( oppFunc ‘𝐺))
87adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝐿 = ( oppFunc ‘𝐺))
9 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐹𝑁𝐺))
101, 2, 3, 4, 6, 8, 9natoppf2 49235 . . 3 ((𝜑𝑥 ∈ (𝐹𝑁𝐺)) → 𝑥 ∈ (𝐿𝑀𝐾))
11 eqid 2729 . . . . 5 (oppCat‘𝑂) = (oppCat‘𝑂)
12 eqid 2729 . . . . 5 (oppCat‘𝑃) = (oppCat‘𝑃)
13 eqid 2729 . . . . 5 ((oppCat‘𝑂) Nat (oppCat‘𝑃)) = ((oppCat‘𝑂) Nat (oppCat‘𝑃))
147adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 = ( oppFunc ‘𝐺))
1514fveq2d 6830 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐿) = ( oppFunc ‘( oppFunc ‘𝐺)))
164natrcl 17879 . . . . . . . . . 10 (𝑥 ∈ (𝐿𝑀𝐾) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃)))
1716adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐿 ∈ (𝑂 Func 𝑃) ∧ 𝐾 ∈ (𝑂 Func 𝑃)))
1817simpld 494 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐿 ∈ (𝑂 Func 𝑃))
1914, 18eqeltrrd 2829 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐺) ∈ (𝑂 Func 𝑃))
20 relfunc 17788 . . . . . . 7 Rel (𝑂 Func 𝑃)
21 eqid 2729 . . . . . . 7 ( oppFunc ‘𝐺) = ( oppFunc ‘𝐺)
2219, 20, 212oppf 49137 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘( oppFunc ‘𝐺)) = 𝐺)
2315, 22eqtr2d 2765 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐺 = ( oppFunc ‘𝐿))
245adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 = ( oppFunc ‘𝐹))
2524fveq2d 6830 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐾) = ( oppFunc ‘( oppFunc ‘𝐹)))
2617simprd 495 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐾 ∈ (𝑂 Func 𝑃))
2724, 26eqeltrrd 2829 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘𝐹) ∈ (𝑂 Func 𝑃))
28 eqid 2729 . . . . . . 7 ( oppFunc ‘𝐹) = ( oppFunc ‘𝐹)
2927, 20, 282oppf 49137 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → ( oppFunc ‘( oppFunc ‘𝐹)) = 𝐹)
3025, 29eqtr2d 2765 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 = ( oppFunc ‘𝐾))
31 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐿𝑀𝐾))
3211, 12, 4, 13, 23, 30, 31natoppf2 49235 . . . 4 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺))
3312oppchomf 17649 . . . . . . . 8 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
3433a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
3512oppccomf 17650 . . . . . . . 8 (compf𝐶) = (compf‘(oppCat‘𝑂))
3635a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (compf𝐶) = (compf‘(oppCat‘𝑂)))
3722oppchomf 17649 . . . . . . . 8 (Homf𝐷) = (Homf ‘(oppCat‘𝑃))
3837a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (Homf𝐷) = (Homf ‘(oppCat‘𝑃)))
3922oppccomf 17650 . . . . . . . 8 (compf𝐷) = (compf‘(oppCat‘𝑃))
4039a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (compf𝐷) = (compf‘(oppCat‘𝑃)))
41 natoppfb.c . . . . . . . . . . 11 (𝜑𝐶𝑉)
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶𝑉)
43 natoppfb.d . . . . . . . . . . 11 (𝜑𝐷𝑊)
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷𝑊)
451, 2, 42, 44, 27funcoppc5 49150 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐹 ∈ (𝐶 Func 𝐷))
4645func1st2nd 49081 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
4746funcrcl2 49084 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐶 ∈ Cat)
481oppccat 17647 . . . . . . . 8 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4911oppccat 17647 . . . . . . . 8 (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat)
5047, 48, 493syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑂) ∈ Cat)
5146funcrcl3 49085 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝐷 ∈ Cat)
522oppccat 17647 . . . . . . . 8 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
5312oppccat 17647 . . . . . . . 8 (𝑃 ∈ Cat → (oppCat‘𝑃) ∈ Cat)
5451, 52, 533syl 18 . . . . . . 7 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (oppCat‘𝑃) ∈ Cat)
5534, 36, 38, 40, 47, 50, 51, 54natpropd 17905 . . . . . 6 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐶 Nat 𝐷) = ((oppCat‘𝑂) Nat (oppCat‘𝑃)))
563, 55eqtrid 2776 . . . . 5 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑁 = ((oppCat‘𝑂) Nat (oppCat‘𝑃)))
5756oveqd 7370 . . . 4 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → (𝐹𝑁𝐺) = (𝐹((oppCat‘𝑂) Nat (oppCat‘𝑃))𝐺))
5832, 57eleqtrrd 2831 . . 3 ((𝜑𝑥 ∈ (𝐿𝑀𝐾)) → 𝑥 ∈ (𝐹𝑁𝐺))
5910, 58impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐹𝑁𝐺) ↔ 𝑥 ∈ (𝐿𝑀𝐾)))
6059eqrdv 2727 1 (𝜑 → (𝐹𝑁𝐺) = (𝐿𝑀𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Catccat 17589  Homf chomf 17591  compfccomf 17592  oppCatcoppc 17636   Func cfunc 17780   Nat cnat 17870   oppFunc coppf 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-oppc 17637  df-func 17784  df-nat 17872  df-oppf 49128
This theorem is referenced by:  fucoppclem  49412  lmddu  49672
  Copyright terms: Public domain W3C validator