Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftermo2 | Structured version Visualization version GIF version |
Description: A terminal object is an initial object in the opposite category. An alternate definition of df-termo 17688 depending on df-inito 17687. (Contributed by Zhi Wang, 29-Aug-2024.) |
Ref | Expression |
---|---|
dftermo2 | ⊢ TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-termo 17688 | . 2 ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) | |
2 | eqid 2738 | . . . . . 6 ⊢ (oppCat‘𝑐) = (oppCat‘𝑐) | |
3 | 2 | oppccat 17421 | . . . . 5 ⊢ (𝑐 ∈ Cat → (oppCat‘𝑐) ∈ Cat) |
4 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑐) = (Base‘𝑐) | |
5 | 2, 4 | oppcbas 17416 | . . . . 5 ⊢ (Base‘𝑐) = (Base‘(oppCat‘𝑐)) |
6 | eqid 2738 | . . . . 5 ⊢ (Hom ‘(oppCat‘𝑐)) = (Hom ‘(oppCat‘𝑐)) | |
7 | 3, 5, 6 | initoval 17696 | . . . 4 ⊢ (𝑐 ∈ Cat → (InitO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏)}) |
8 | eqid 2738 | . . . . . . . . 9 ⊢ (Hom ‘𝑐) = (Hom ‘𝑐) | |
9 | 8, 2 | oppchom 17413 | . . . . . . . 8 ⊢ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) = (𝑏(Hom ‘𝑐)𝑎) |
10 | 9 | eleq2i 2830 | . . . . . . 7 ⊢ (ℎ ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)) |
11 | 10 | eubii 2585 | . . . . . 6 ⊢ (∃!ℎ ℎ ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)) |
12 | 11 | ralbii 3091 | . . . . 5 ⊢ (∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)) |
13 | 12 | rabbii 3406 | . . . 4 ⊢ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏)} = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)} |
14 | 7, 13 | eqtrdi 2794 | . . 3 ⊢ (𝑐 ∈ Cat → (InitO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) |
15 | 14 | mpteq2ia 5177 | . 2 ⊢ (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) |
16 | 1, 15 | eqtr4i 2769 | 1 ⊢ TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 {crab 3068 ↦ cmpt 5157 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 Hom chom 16961 Catccat 17361 oppCatcoppc 17408 InitOcinito 17684 TermOctermo 17685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-tpos 8030 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-hom 16974 df-cco 16975 df-cat 17365 df-cid 17366 df-oppc 17409 df-inito 17687 df-termo 17688 |
This theorem is referenced by: dftermo3 17709 |
Copyright terms: Public domain | W3C validator |