MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftermo2 Structured version   Visualization version   GIF version

Theorem dftermo2 17973
Description: A terminal object is an initial object in the opposite category. An alternate definition of df-termo 17954 depending on df-inito 17953. (Contributed by Zhi Wang, 29-Aug-2024.)
Assertion
Ref Expression
dftermo2 TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐)))

Proof of Theorem dftermo2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-termo 17954 . 2 TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
2 eqid 2730 . . . . . 6 (oppCat‘𝑐) = (oppCat‘𝑐)
32oppccat 17690 . . . . 5 (𝑐 ∈ Cat → (oppCat‘𝑐) ∈ Cat)
4 eqid 2730 . . . . . 6 (Base‘𝑐) = (Base‘𝑐)
52, 4oppcbas 17686 . . . . 5 (Base‘𝑐) = (Base‘(oppCat‘𝑐))
6 eqid 2730 . . . . 5 (Hom ‘(oppCat‘𝑐)) = (Hom ‘(oppCat‘𝑐))
73, 5, 6initoval 17962 . . . 4 (𝑐 ∈ Cat → (InitO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏)})
8 eqid 2730 . . . . . . . . 9 (Hom ‘𝑐) = (Hom ‘𝑐)
98, 2oppchom 17683 . . . . . . . 8 (𝑎(Hom ‘(oppCat‘𝑐))𝑏) = (𝑏(Hom ‘𝑐)𝑎)
109eleq2i 2821 . . . . . . 7 ( ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ∈ (𝑏(Hom ‘𝑐)𝑎))
1110eubii 2579 . . . . . 6 (∃! ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ∃! ∈ (𝑏(Hom ‘𝑐)𝑎))
1211ralbii 3076 . . . . 5 (∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏) ↔ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎))
1312rabbii 3414 . . . 4 {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘(oppCat‘𝑐))𝑏)} = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)}
147, 13eqtrdi 2781 . . 3 (𝑐 ∈ Cat → (InitO‘(oppCat‘𝑐)) = {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
1514mpteq2ia 5205 . 2 (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐))) = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
161, 15eqtr4i 2756 1 TermO = (𝑐 ∈ Cat ↦ (InitO‘(oppCat‘𝑐)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ∃!weu 2562  wral 3045  {crab 3408  cmpt 5191  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  oppCatcoppc 17679  InitOcinito 17950  TermOctermo 17951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-oppc 17680  df-inito 17953  df-termo 17954
This theorem is referenced by:  dftermo3  17975  oppctermo  49229  dftermo4  49495
  Copyright terms: Public domain W3C validator