Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > irredn0 | Structured version Visualization version GIF version |
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredn0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
irredn0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | irredn0.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 19808 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | 3 | anim1i 615 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) |
5 | eldif 3897 | . . . . . . . 8 ⊢ ( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ↔ ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) | |
6 | 4, 5 | sylibr 233 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
7 | eqid 2738 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | 1, 7, 2 | ringlz 19826 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
9 | 3, 8 | mpdan 684 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ( 0 (.r‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
11 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) | |
12 | 11 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅)𝑦) = 0 )) |
13 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑦 = 0 → ( 0 (.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) | |
14 | 13 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑦 = 0 → (( 0 (.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
15 | 12, 14 | rspc2ev 3572 | . . . . . . 7 ⊢ (( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ( 0 (.r‘𝑅) 0 ) = 0 ) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
16 | 6, 6, 10, 15 | syl3anc 1370 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
17 | 16 | ex 413 | . . . . 5 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ (Unit‘𝑅) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
18 | 17 | orrd 860 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
19 | eqid 2738 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
20 | irredn0.i | . . . . . 6 ⊢ 𝐼 = (Irred‘𝑅) | |
21 | eqid 2738 | . . . . . 6 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
22 | 1, 19, 20, 21, 7 | isnirred 19942 | . . . . 5 ⊢ ( 0 ∈ (Base‘𝑅) → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
24 | 18, 23 | mpbird 256 | . . 3 ⊢ (𝑅 ∈ Ring → ¬ 0 ∈ 𝐼) |
25 | 24 | adantr 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → ¬ 0 ∈ 𝐼) |
26 | simpr 485 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
27 | eleq1 2826 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ∈ 𝐼 ↔ 0 ∈ 𝐼)) | |
28 | 26, 27 | syl5ibcom 244 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑋 = 0 → 0 ∈ 𝐼)) |
29 | 28 | necon3bd 2957 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (¬ 0 ∈ 𝐼 → 𝑋 ≠ 0 )) |
30 | 25, 29 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 0gc0g 17150 Ringcrg 19783 Unitcui 19881 Irredcir 19882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ring 19785 df-irred 19885 |
This theorem is referenced by: prmirred 20696 |
Copyright terms: Public domain | W3C validator |