![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredn0 | Structured version Visualization version GIF version |
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredn0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
irredn0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2793 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | irredn0.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 18997 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | 3 | anim1i 614 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) |
5 | eldif 3864 | . . . . . . . 8 ⊢ ( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ↔ ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) | |
6 | 4, 5 | sylibr 235 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
7 | eqid 2793 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | 1, 7, 2 | ringlz 19015 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
9 | 3, 8 | mpdan 683 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ( 0 (.r‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
11 | oveq1 7014 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) | |
12 | 11 | eqeq1d 2795 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅)𝑦) = 0 )) |
13 | oveq2 7015 | . . . . . . . . 9 ⊢ (𝑦 = 0 → ( 0 (.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) | |
14 | 13 | eqeq1d 2795 | . . . . . . . 8 ⊢ (𝑦 = 0 → (( 0 (.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
15 | 12, 14 | rspc2ev 3569 | . . . . . . 7 ⊢ (( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ( 0 (.r‘𝑅) 0 ) = 0 ) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
16 | 6, 6, 10, 15 | syl3anc 1362 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
17 | 16 | ex 413 | . . . . 5 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ (Unit‘𝑅) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
18 | 17 | orrd 858 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
19 | eqid 2793 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
20 | irredn0.i | . . . . . 6 ⊢ 𝐼 = (Irred‘𝑅) | |
21 | eqid 2793 | . . . . . 6 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
22 | 1, 19, 20, 21, 7 | isnirred 19128 | . . . . 5 ⊢ ( 0 ∈ (Base‘𝑅) → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
24 | 18, 23 | mpbird 258 | . . 3 ⊢ (𝑅 ∈ Ring → ¬ 0 ∈ 𝐼) |
25 | 24 | adantr 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → ¬ 0 ∈ 𝐼) |
26 | simpr 485 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
27 | eleq1 2868 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ∈ 𝐼 ↔ 0 ∈ 𝐼)) | |
28 | 26, 27 | syl5ibcom 246 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑋 = 0 → 0 ∈ 𝐼)) |
29 | 28 | necon3bd 2996 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (¬ 0 ∈ 𝐼 → 𝑋 ≠ 0 )) |
30 | 25, 29 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∃wrex 3104 ∖ cdif 3851 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 .rcmulr 16383 0gc0g 16530 Ringcrg 18975 Unitcui 19067 Irredcir 19068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-plusg 16395 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 df-minusg 17853 df-mgp 18918 df-ring 18977 df-irred 19071 |
This theorem is referenced by: prmirred 20312 |
Copyright terms: Public domain | W3C validator |