![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > irredn0 | Structured version Visualization version GIF version |
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredn0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
irredn0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | irredn0.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 19986 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | 3 | anim1i 615 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) |
5 | eldif 3919 | . . . . . . . 8 ⊢ ( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ↔ ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) | |
6 | 4, 5 | sylibr 233 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
7 | eqid 2736 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | 1, 7, 2 | ringlz 20007 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
9 | 3, 8 | mpdan 685 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ( 0 (.r‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
11 | oveq1 7361 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) | |
12 | 11 | eqeq1d 2738 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅)𝑦) = 0 )) |
13 | oveq2 7362 | . . . . . . . . 9 ⊢ (𝑦 = 0 → ( 0 (.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) | |
14 | 13 | eqeq1d 2738 | . . . . . . . 8 ⊢ (𝑦 = 0 → (( 0 (.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
15 | 12, 14 | rspc2ev 3591 | . . . . . . 7 ⊢ (( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ( 0 (.r‘𝑅) 0 ) = 0 ) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
16 | 6, 6, 10, 15 | syl3anc 1371 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
17 | 16 | ex 413 | . . . . 5 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ (Unit‘𝑅) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
18 | 17 | orrd 861 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
19 | eqid 2736 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
20 | irredn0.i | . . . . . 6 ⊢ 𝐼 = (Irred‘𝑅) | |
21 | eqid 2736 | . . . . . 6 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
22 | 1, 19, 20, 21, 7 | isnirred 20125 | . . . . 5 ⊢ ( 0 ∈ (Base‘𝑅) → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
24 | 18, 23 | mpbird 256 | . . 3 ⊢ (𝑅 ∈ Ring → ¬ 0 ∈ 𝐼) |
25 | 24 | adantr 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → ¬ 0 ∈ 𝐼) |
26 | simpr 485 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
27 | eleq1 2825 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ∈ 𝐼 ↔ 0 ∈ 𝐼)) | |
28 | 26, 27 | syl5ibcom 244 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑋 = 0 → 0 ∈ 𝐼)) |
29 | 28 | necon3bd 2956 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (¬ 0 ∈ 𝐼 → 𝑋 ≠ 0 )) |
30 | 25, 29 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2942 ∃wrex 3072 ∖ cdif 3906 ‘cfv 6494 (class class class)co 7354 Basecbs 17080 .rcmulr 17131 0gc0g 17318 Ringcrg 19960 Unitcui 20064 Irredcir 20065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-er 8645 df-en 8881 df-dom 8882 df-sdom 8883 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-nn 12151 df-2 12213 df-sets 17033 df-slot 17051 df-ndx 17063 df-base 17081 df-plusg 17143 df-0g 17320 df-mgm 18494 df-sgrp 18543 df-mnd 18554 df-grp 18748 df-minusg 18749 df-mgp 19893 df-ring 19962 df-irred 20068 |
This theorem is referenced by: prmirred 20891 |
Copyright terms: Public domain | W3C validator |