Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > irredn0 | Structured version Visualization version GIF version |
Description: The additive identity is not irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irredn0.i | ⊢ 𝐼 = (Irred‘𝑅) |
irredn0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
irredn0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | irredn0.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 19587 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | 3 | anim1i 618 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) |
5 | eldif 3876 | . . . . . . . 8 ⊢ ( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ↔ ( 0 ∈ (Base‘𝑅) ∧ ¬ 0 ∈ (Unit‘𝑅))) | |
6 | 4, 5 | sylibr 237 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))) |
7 | eqid 2737 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | 1, 7, 2 | ringlz 19605 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
9 | 3, 8 | mpdan 687 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ( 0 (.r‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 484 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
11 | oveq1 7220 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑦) = ( 0 (.r‘𝑅)𝑦)) | |
12 | 11 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅)𝑦) = 0 )) |
13 | oveq2 7221 | . . . . . . . . 9 ⊢ (𝑦 = 0 → ( 0 (.r‘𝑅)𝑦) = ( 0 (.r‘𝑅) 0 )) | |
14 | 13 | eqeq1d 2739 | . . . . . . . 8 ⊢ (𝑦 = 0 → (( 0 (.r‘𝑅)𝑦) = 0 ↔ ( 0 (.r‘𝑅) 0 ) = 0 )) |
15 | 12, 14 | rspc2ev 3549 | . . . . . . 7 ⊢ (( 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ 0 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅)) ∧ ( 0 (.r‘𝑅) 0 ) = 0 ) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
16 | 6, 6, 10, 15 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ ¬ 0 ∈ (Unit‘𝑅)) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ) |
17 | 16 | ex 416 | . . . . 5 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ (Unit‘𝑅) → ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
18 | 17 | orrd 863 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 )) |
19 | eqid 2737 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
20 | irredn0.i | . . . . . 6 ⊢ 𝐼 = (Irred‘𝑅) | |
21 | eqid 2737 | . . . . . 6 ⊢ ((Base‘𝑅) ∖ (Unit‘𝑅)) = ((Base‘𝑅) ∖ (Unit‘𝑅)) | |
22 | 1, 19, 20, 21, 7 | isnirred 19718 | . . . . 5 ⊢ ( 0 ∈ (Base‘𝑅) → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
23 | 3, 22 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Ring → (¬ 0 ∈ 𝐼 ↔ ( 0 ∈ (Unit‘𝑅) ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))∃𝑦 ∈ ((Base‘𝑅) ∖ (Unit‘𝑅))(𝑥(.r‘𝑅)𝑦) = 0 ))) |
24 | 18, 23 | mpbird 260 | . . 3 ⊢ (𝑅 ∈ Ring → ¬ 0 ∈ 𝐼) |
25 | 24 | adantr 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → ¬ 0 ∈ 𝐼) |
26 | simpr 488 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
27 | eleq1 2825 | . . . 4 ⊢ (𝑋 = 0 → (𝑋 ∈ 𝐼 ↔ 0 ∈ 𝐼)) | |
28 | 26, 27 | syl5ibcom 248 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (𝑋 = 0 → 0 ∈ 𝐼)) |
29 | 28 | necon3bd 2954 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → (¬ 0 ∈ 𝐼 → 𝑋 ≠ 0 )) |
30 | 25, 29 | mpd 15 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 ∖ cdif 3863 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 .rcmulr 16803 0gc0g 16944 Ringcrg 19562 Unitcui 19657 Irredcir 19658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-mgp 19505 df-ring 19564 df-irred 19661 |
This theorem is referenced by: prmirred 20461 |
Copyright terms: Public domain | W3C validator |